File size: 7,416 Bytes
501c549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import sys
import torch

from PIL import Image
import numpy as np
from io import BytesIO
import os

from diffusers.utils import load_image
from diffusers import ControlNetModel
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from PIL import Image
from pipeline_controlnet_blip_diffusion import BlipDiffusionControlNetPipeline

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
                "Salesforce/blipdiffusion-controlnet"
)
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint")

blip_diffusion_pipe.controlnet = controlnet
blip_diffusion_pipe.to(device)

def make_inpaint_condition(image, image_mask):
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
    assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
    image[image_mask > 0.5] = -1  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image

css='''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
.image_upload{min-height:500px}
.image_upload [data-testid="image"], .image_upload [data-testid="image"] > div{min-height: 500px}
.image_upload [data-testid="target"], .image_upload [data-testid="target"] > div{min-height: 500px}
.image_upload .touch-none{display: flex}
#output_image{min-height:500px;max-height=500px;}
'''


def create_demo():
    # load information from users
    HEIGHT, WIDTH=512,512
    with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("IBM Plex Mono"), "ui-monospace","monospace"],
                                           primary_hue="lime",
                                           secondary_hue="emerald",
                                           neutral_hue="slate",
                                           ), css=css) as demo:
        gr.Markdown('# BLIP-Diffusion')
        with gr.Accordion('Instructions', open=False):
            gr.Markdown('1. Upload src image and draw mask')
            gr.Markdown('2. Upload tgt image')
            gr.Markdown('3. Input name of tgt object and description')
            gr.Markdown('4. Click `Generate` when it is ready!')

        with gr.Group():
            with gr.Box():
                with gr.Column():
                    with gr.Row() as main_blocks:
                        #
                        with gr.Column() as step_1:
                            gr.Markdown('### Source Input and Add Mask')
                            image = gr.Image(source='upload',
                                        shape=[HEIGHT,WIDTH],
                                        type='pil',#numpy',
                                        elem_classes="image_upload",
                                        label='Source Image',
                                        tool='sketch',
                                        brush_radius=60).style(height=500)
                            src_input=image
                            text_prompt = gr.Textbox(label='Prompt')
                            run_button = gr.Button(label='Generate', value='Generate', variant="primary")       
                        #
                        with gr.Column() as step_2:
                            gr.Markdown('### Target Input')
                            target = gr.Image(source='upload',
                                        shape=[HEIGHT,WIDTH],
                                        type='pil',#numpy',
                                        elem_classes="image_upload",
                                        label='Target Image'
                                        ).style(height=500)
                            tgt_input=target
                            style_subject = gr.Textbox(label='Target Object')
                            
                    with gr.Row() as output_blocks:
                        with gr.Column() as output_step:  
                            gr.Markdown('### Output')   
                            output_image = gr.Gallery(
                                      label="Generated images",
                                      show_label=False,
                                      elem_id="output_image",
                                  ).style(height=500,containter=True) 

                    with gr.Accordion('Advanced options', open=False):
                        num_inference_steps = gr.Slider(label='Steps',
                                            minimum=1,
                                            maximum=100,
                                            value=50,
                                            step=1)
                        guidance_scale = gr.Slider(label='Text Guidance Scale',
                                            minimum=0.1,
                                            maximum=30.0,
                                            value=7.5,
                                            step=0.1)
                        seed = gr.Slider(label='Seed',
                                            minimum=-1,
                                            maximum=2147483647,
                                            step=1,
                                            randomize=True)  
    
        # Model
        inputs = [
            src_input,
            tgt_input,
            text_prompt,
            style_subject,
            num_inference_steps,
            guidance_scale,
            seed,
        ]

        def generate(src_input,
            tgt_input,
            text_prompt,
            style_subject,
            num_inference_steps,
            guidance_scale,
            seed,
           ):
            if src_input is None or tgt_input is None:
                gr.Error("You must upload an image first.")
                return {output_image : None,}
            # model part
            tgt_subject = style_subject
            generator = torch.Generator(device="cpu").manual_seed(seed)
            init_image = src_input['image']
            cldm_cond_image = src_input['mask']
            control_image = make_inpaint_condition(init_image, cldm_cond_image)
            style_image = tgt_input

            negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"

            output = blip_diffusion_pipe(
                text_prompt,
                style_image,
                control_image,
                style_subject,
                tgt_subject,
                generator=generator,
                image=init_image,
                mask_image=cldm_cond_image,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                neg_prompt=negative_prompt,
                height=HEIGHT,
                width=WIDTH,
            ).images
            return {output_image : output,}

        run_button.click(fn=generate, inputs=inputs, outputs=[output_image])
        return demo

if __name__ == '__main__':
    demo = create_demo()
    demo.queue().launch()