Upload 3 files
Browse files- app-2.py +173 -0
- pipeline_controlnet_blip_diffusion.py +653 -0
- requirements.txt +7 -0
app-2.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
from io import BytesIO
|
8 |
+
import os
|
9 |
+
|
10 |
+
from diffusers.utils import load_image
|
11 |
+
from diffusers import ControlNetModel
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from diffusers.image_processor import VaeImageProcessor
|
15 |
+
from PIL import Image
|
16 |
+
from pipeline_controlnet_blip_diffusion import BlipDiffusionControlNetPipeline
|
17 |
+
|
18 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
+
|
20 |
+
blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
|
21 |
+
"Salesforce/blipdiffusion-controlnet"
|
22 |
+
)
|
23 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint")
|
24 |
+
|
25 |
+
blip_diffusion_pipe.controlnet = controlnet
|
26 |
+
blip_diffusion_pipe.to(device)
|
27 |
+
|
28 |
+
def make_inpaint_condition(image, image_mask):
|
29 |
+
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
30 |
+
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
31 |
+
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
32 |
+
image[image_mask > 0.5] = -1 # set as masked pixel
|
33 |
+
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
34 |
+
image = torch.from_numpy(image)
|
35 |
+
return image
|
36 |
+
|
37 |
+
css='''
|
38 |
+
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
|
39 |
+
.image_upload{min-height:500px}
|
40 |
+
.image_upload [data-testid="image"], .image_upload [data-testid="image"] > div{min-height: 500px}
|
41 |
+
.image_upload [data-testid="target"], .image_upload [data-testid="target"] > div{min-height: 500px}
|
42 |
+
.image_upload .touch-none{display: flex}
|
43 |
+
#output_image{min-height:500px;max-height=500px;}
|
44 |
+
'''
|
45 |
+
|
46 |
+
|
47 |
+
def create_demo():
|
48 |
+
# load information from users
|
49 |
+
HEIGHT, WIDTH=512,512
|
50 |
+
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("IBM Plex Mono"), "ui-monospace","monospace"],
|
51 |
+
primary_hue="lime",
|
52 |
+
secondary_hue="emerald",
|
53 |
+
neutral_hue="slate",
|
54 |
+
), css=css) as demo:
|
55 |
+
gr.Markdown('# BLIP-Diffusion')
|
56 |
+
with gr.Accordion('Instructions', open=False):
|
57 |
+
gr.Markdown('1. Upload src image and draw mask')
|
58 |
+
gr.Markdown('2. Upload tgt image')
|
59 |
+
gr.Markdown('3. Input name of tgt object and description')
|
60 |
+
gr.Markdown('4. Click `Generate` when it is ready!')
|
61 |
+
|
62 |
+
with gr.Group():
|
63 |
+
with gr.Box():
|
64 |
+
with gr.Column():
|
65 |
+
with gr.Row() as main_blocks:
|
66 |
+
#
|
67 |
+
with gr.Column() as step_1:
|
68 |
+
gr.Markdown('### Source Input and Add Mask')
|
69 |
+
image = gr.Image(source='upload',
|
70 |
+
shape=[HEIGHT,WIDTH],
|
71 |
+
type='pil',#numpy',
|
72 |
+
elem_classes="image_upload",
|
73 |
+
label='Source Image',
|
74 |
+
tool='sketch',
|
75 |
+
brush_radius=60).style(height=500)
|
76 |
+
src_input=image
|
77 |
+
text_prompt = gr.Textbox(label='Prompt')
|
78 |
+
run_button = gr.Button(label='Generate', value='Generate', variant="primary")
|
79 |
+
#
|
80 |
+
with gr.Column() as step_2:
|
81 |
+
gr.Markdown('### Target Input')
|
82 |
+
target = gr.Image(source='upload',
|
83 |
+
shape=[HEIGHT,WIDTH],
|
84 |
+
type='pil',#numpy',
|
85 |
+
elem_classes="image_upload",
|
86 |
+
label='Target Image'
|
87 |
+
).style(height=500)
|
88 |
+
tgt_input=target
|
89 |
+
style_subject = gr.Textbox(label='Target Object')
|
90 |
+
|
91 |
+
with gr.Row() as output_blocks:
|
92 |
+
with gr.Column() as output_step:
|
93 |
+
gr.Markdown('### Output')
|
94 |
+
output_image = gr.Gallery(
|
95 |
+
label="Generated images",
|
96 |
+
show_label=False,
|
97 |
+
elem_id="output_image",
|
98 |
+
).style(height=500,containter=True)
|
99 |
+
|
100 |
+
with gr.Accordion('Advanced options', open=False):
|
101 |
+
num_inference_steps = gr.Slider(label='Steps',
|
102 |
+
minimum=1,
|
103 |
+
maximum=100,
|
104 |
+
value=50,
|
105 |
+
step=1)
|
106 |
+
guidance_scale = gr.Slider(label='Text Guidance Scale',
|
107 |
+
minimum=0.1,
|
108 |
+
maximum=30.0,
|
109 |
+
value=7.5,
|
110 |
+
step=0.1)
|
111 |
+
seed = gr.Slider(label='Seed',
|
112 |
+
minimum=-1,
|
113 |
+
maximum=2147483647,
|
114 |
+
step=1,
|
115 |
+
randomize=True)
|
116 |
+
|
117 |
+
# Model
|
118 |
+
inputs = [
|
119 |
+
src_input,
|
120 |
+
tgt_input,
|
121 |
+
text_prompt,
|
122 |
+
style_subject,
|
123 |
+
num_inference_steps,
|
124 |
+
guidance_scale,
|
125 |
+
seed,
|
126 |
+
]
|
127 |
+
|
128 |
+
def generate(src_input,
|
129 |
+
tgt_input,
|
130 |
+
text_prompt,
|
131 |
+
style_subject,
|
132 |
+
num_inference_steps,
|
133 |
+
guidance_scale,
|
134 |
+
seed,
|
135 |
+
):
|
136 |
+
if src_input is None or tgt_input is None:
|
137 |
+
gr.Error("You must upload an image first.")
|
138 |
+
return {output_image : None,}
|
139 |
+
# model part
|
140 |
+
tgt_subject = style_subject
|
141 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
142 |
+
init_image = src_input['image']
|
143 |
+
cldm_cond_image = src_input['mask']
|
144 |
+
control_image = make_inpaint_condition(init_image, cldm_cond_image)
|
145 |
+
style_image = tgt_input
|
146 |
+
|
147 |
+
negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
|
148 |
+
|
149 |
+
output = blip_diffusion_pipe(
|
150 |
+
text_prompt,
|
151 |
+
style_image,
|
152 |
+
control_image,
|
153 |
+
style_subject,
|
154 |
+
tgt_subject,
|
155 |
+
generator=generator,
|
156 |
+
image=init_image,
|
157 |
+
mask_image=cldm_cond_image,
|
158 |
+
guidance_scale=guidance_scale,
|
159 |
+
num_inference_steps=num_inference_steps,
|
160 |
+
neg_prompt=negative_prompt,
|
161 |
+
height=HEIGHT,
|
162 |
+
width=WIDTH,
|
163 |
+
).images
|
164 |
+
return {output_image : output,}
|
165 |
+
|
166 |
+
run_button.click(fn=generate, inputs=inputs, outputs=[output_image])
|
167 |
+
return demo
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
demo = create_demo()
|
171 |
+
demo.queue().launch()
|
172 |
+
|
173 |
+
|
pipeline_controlnet_blip_diffusion.py
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Salesforce.com, inc.
|
2 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import List, Optional, Union
|
16 |
+
|
17 |
+
import PIL.Image
|
18 |
+
import torch
|
19 |
+
from transformers import CLIPTokenizer
|
20 |
+
|
21 |
+
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
22 |
+
from diffusers.schedulers import PNDMScheduler
|
23 |
+
from diffusers.utils import (
|
24 |
+
logging,
|
25 |
+
replace_example_docstring,
|
26 |
+
)
|
27 |
+
from diffusers.utils.torch_utils import randn_tensor
|
28 |
+
from diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
|
29 |
+
from diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
|
30 |
+
from diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel
|
31 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
32 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
EXAMPLE_DOC_STRING = """
|
37 |
+
Examples:
|
38 |
+
```py
|
39 |
+
>>> from diffusers.pipelines import BlipDiffusionControlNetPipeline
|
40 |
+
>>> from diffusers.utils import load_image
|
41 |
+
>>> from controlnet_aux import CannyDetector
|
42 |
+
>>> import torch
|
43 |
+
|
44 |
+
>>> blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
|
45 |
+
... "Salesforce/blipdiffusion-controlnet", torch_dtype=torch.float16
|
46 |
+
... ).to("cuda")
|
47 |
+
|
48 |
+
>>> style_subject = "flower"
|
49 |
+
>>> tgt_subject = "teapot"
|
50 |
+
>>> text_prompt = "on a marble table"
|
51 |
+
|
52 |
+
>>> cldm_cond_image = load_image(
|
53 |
+
... "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/kettle.jpg"
|
54 |
+
... ).resize((512, 512))
|
55 |
+
>>> canny = CannyDetector()
|
56 |
+
>>> cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type="pil")
|
57 |
+
>>> style_image = load_image(
|
58 |
+
... "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg"
|
59 |
+
... )
|
60 |
+
>>> guidance_scale = 7.5
|
61 |
+
>>> num_inference_steps = 50
|
62 |
+
>>> negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
|
63 |
+
|
64 |
+
|
65 |
+
>>> output = blip_diffusion_pipe(
|
66 |
+
... text_prompt,
|
67 |
+
... style_image,
|
68 |
+
... cldm_cond_image,
|
69 |
+
... style_subject,
|
70 |
+
... tgt_subject,
|
71 |
+
... guidance_scale=guidance_scale,
|
72 |
+
... num_inference_steps=num_inference_steps,
|
73 |
+
... neg_prompt=negative_prompt,
|
74 |
+
... height=512,
|
75 |
+
... width=512,
|
76 |
+
... ).images
|
77 |
+
>>> output[0].save("image.png")
|
78 |
+
```
|
79 |
+
"""
|
80 |
+
|
81 |
+
|
82 |
+
class BlipDiffusionControlNetPipeline(DiffusionPipeline):
|
83 |
+
"""
|
84 |
+
Pipeline for Canny Edge based Controlled subject-driven generation using Blip Diffusion.
|
85 |
+
|
86 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
87 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
88 |
+
|
89 |
+
Args:
|
90 |
+
tokenizer ([`CLIPTokenizer`]):
|
91 |
+
Tokenizer for the text encoder
|
92 |
+
text_encoder ([`ContextCLIPTextModel`]):
|
93 |
+
Text encoder to encode the text prompt
|
94 |
+
vae ([`AutoencoderKL`]):
|
95 |
+
VAE model to map the latents to the image
|
96 |
+
unet ([`UNet2DConditionModel`]):
|
97 |
+
Conditional U-Net architecture to denoise the image embedding.
|
98 |
+
scheduler ([`PNDMScheduler`]):
|
99 |
+
A scheduler to be used in combination with `unet` to generate image latents.
|
100 |
+
qformer ([`Blip2QFormerModel`]):
|
101 |
+
QFormer model to get multi-modal embeddings from the text and image.
|
102 |
+
controlnet ([`ControlNetModel`]):
|
103 |
+
ControlNet model to get the conditioning image embedding.
|
104 |
+
image_processor ([`BlipImageProcessor`]):
|
105 |
+
Image Processor to preprocess and postprocess the image.
|
106 |
+
ctx_begin_pos (int, `optional`, defaults to 2):
|
107 |
+
Position of the context token in the text encoder.
|
108 |
+
"""
|
109 |
+
|
110 |
+
model_cpu_offload_seq = "qformer->text_encoder->unet->vae"
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
tokenizer: CLIPTokenizer,
|
115 |
+
text_encoder: ContextCLIPTextModel,
|
116 |
+
vae: AutoencoderKL,
|
117 |
+
unet: UNet2DConditionModel,
|
118 |
+
scheduler: PNDMScheduler,
|
119 |
+
qformer: Blip2QFormerModel,
|
120 |
+
controlnet: ControlNetModel,
|
121 |
+
image_processor: BlipImageProcessor,
|
122 |
+
ctx_begin_pos: int = 2,
|
123 |
+
mean: List[float] = None,
|
124 |
+
std: List[float] = None,
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
|
128 |
+
self.register_modules(
|
129 |
+
tokenizer=tokenizer,
|
130 |
+
text_encoder=text_encoder,
|
131 |
+
vae=vae,
|
132 |
+
unet=unet,
|
133 |
+
scheduler=scheduler,
|
134 |
+
qformer=qformer,
|
135 |
+
controlnet=controlnet,
|
136 |
+
image_processor=image_processor,
|
137 |
+
)
|
138 |
+
# copy control net
|
139 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
140 |
+
self.init_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
141 |
+
self.mask_processor = VaeImageProcessor(
|
142 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
143 |
+
)
|
144 |
+
self.control_image_processor = VaeImageProcessor(
|
145 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
146 |
+
)
|
147 |
+
self.register_to_config(ctx_begin_pos=ctx_begin_pos, mean=mean, std=std)
|
148 |
+
|
149 |
+
def get_query_embeddings(self, input_image, src_subject):
|
150 |
+
return self.qformer(image_input=input_image, text_input=src_subject, return_dict=False)
|
151 |
+
|
152 |
+
# from the original Blip Diffusion code, speciefies the target subject and augments the prompt by repeating it
|
153 |
+
def _build_prompt(self, prompts, tgt_subjects, prompt_strength=1.0, prompt_reps=20):
|
154 |
+
rv = []
|
155 |
+
for prompt, tgt_subject in zip(prompts, tgt_subjects):
|
156 |
+
prompt = f"a {tgt_subject} {prompt.strip()}"
|
157 |
+
# a trick to amplify the prompt
|
158 |
+
rv.append(", ".join([prompt] * int(prompt_strength * prompt_reps)))
|
159 |
+
|
160 |
+
return rv
|
161 |
+
|
162 |
+
# Copied from diffusers.pipelines.consistency_models.pipeline_consistency_models.ConsistencyModelPipeline.prepare_latents
|
163 |
+
def prepare_latents_old(
|
164 |
+
self,
|
165 |
+
batch_size,
|
166 |
+
num_channels,
|
167 |
+
height,
|
168 |
+
width,
|
169 |
+
dtype,
|
170 |
+
device,
|
171 |
+
generator,
|
172 |
+
latents=None,
|
173 |
+
image=None):
|
174 |
+
shape = (batch_size, num_channels, height, width)
|
175 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
176 |
+
raise ValueError(
|
177 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
178 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
179 |
+
)
|
180 |
+
|
181 |
+
if latents is None:
|
182 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
183 |
+
else:
|
184 |
+
latents = latents.to(device=device, dtype=dtype)
|
185 |
+
|
186 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
187 |
+
latents = latents * self.scheduler.init_noise_sigma
|
188 |
+
return latents
|
189 |
+
|
190 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
|
191 |
+
def prepare_latents(
|
192 |
+
self,
|
193 |
+
batch_size,
|
194 |
+
num_channels_latents,
|
195 |
+
height,
|
196 |
+
width,
|
197 |
+
dtype,
|
198 |
+
device,
|
199 |
+
generator,
|
200 |
+
latents=None,
|
201 |
+
image=None,
|
202 |
+
timestep=None,
|
203 |
+
is_strength_max=True,
|
204 |
+
return_noise=False,
|
205 |
+
return_image_latents=False,
|
206 |
+
):
|
207 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
208 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
209 |
+
raise ValueError(
|
210 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
211 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
212 |
+
)
|
213 |
+
|
214 |
+
if (image is None or timestep is None) and not is_strength_max:
|
215 |
+
raise ValueError(
|
216 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
217 |
+
"However, either the image or the noise timestep has not been provided."
|
218 |
+
)
|
219 |
+
|
220 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
221 |
+
image = image.to(device=device, dtype=dtype)
|
222 |
+
|
223 |
+
if image.shape[1] == 4:
|
224 |
+
image_latents = image
|
225 |
+
else:
|
226 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
227 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
228 |
+
|
229 |
+
if latents is None:
|
230 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
231 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
232 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
233 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
234 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
235 |
+
else:
|
236 |
+
noise = latents.to(device)
|
237 |
+
latents = noise * self.scheduler.init_noise_sigma
|
238 |
+
|
239 |
+
outputs = (latents,)
|
240 |
+
|
241 |
+
if return_noise:
|
242 |
+
outputs += (noise,)
|
243 |
+
|
244 |
+
if return_image_latents:
|
245 |
+
outputs += (image_latents,)
|
246 |
+
|
247 |
+
return outputs
|
248 |
+
|
249 |
+
def encode_prompt(self, query_embeds, prompt, device=None):
|
250 |
+
device = device or self._execution_device
|
251 |
+
|
252 |
+
# embeddings for prompt, with query_embeds as context
|
253 |
+
max_len = self.text_encoder.text_model.config.max_position_embeddings
|
254 |
+
max_len -= self.qformer.config.num_query_tokens
|
255 |
+
|
256 |
+
tokenized_prompt = self.tokenizer(
|
257 |
+
prompt,
|
258 |
+
padding="max_length",
|
259 |
+
truncation=True,
|
260 |
+
max_length=max_len,
|
261 |
+
return_tensors="pt",
|
262 |
+
).to(device)
|
263 |
+
|
264 |
+
batch_size = query_embeds.shape[0]
|
265 |
+
ctx_begin_pos = [self.config.ctx_begin_pos] * batch_size
|
266 |
+
|
267 |
+
text_embeddings = self.text_encoder(
|
268 |
+
input_ids=tokenized_prompt.input_ids,
|
269 |
+
ctx_embeddings=query_embeds,
|
270 |
+
ctx_begin_pos=ctx_begin_pos,
|
271 |
+
)[0]
|
272 |
+
|
273 |
+
return text_embeddings
|
274 |
+
|
275 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
276 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
277 |
+
# get the original timestep using init_timestep
|
278 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
279 |
+
|
280 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
281 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
282 |
+
|
283 |
+
return timesteps, num_inference_steps - t_start
|
284 |
+
|
285 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
|
286 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
287 |
+
if isinstance(generator, list):
|
288 |
+
image_latents = [
|
289 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
290 |
+
for i in range(image.shape[0])
|
291 |
+
]
|
292 |
+
image_latents = torch.cat(image_latents, dim=0)
|
293 |
+
else:
|
294 |
+
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
|
295 |
+
|
296 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
297 |
+
|
298 |
+
return image_latents
|
299 |
+
|
300 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
|
301 |
+
def prepare_mask_latents(
|
302 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
303 |
+
):
|
304 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
305 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
306 |
+
# and half precision
|
307 |
+
mask = torch.nn.functional.interpolate(
|
308 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
309 |
+
)
|
310 |
+
mask = mask.to(device=device, dtype=dtype)
|
311 |
+
|
312 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
313 |
+
|
314 |
+
if masked_image.shape[1] == 4:
|
315 |
+
masked_image_latents = masked_image
|
316 |
+
else:
|
317 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
318 |
+
|
319 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
320 |
+
if mask.shape[0] < batch_size:
|
321 |
+
if not batch_size % mask.shape[0] == 0:
|
322 |
+
raise ValueError(
|
323 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
324 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
325 |
+
" of masks that you pass is divisible by the total requested batch size."
|
326 |
+
)
|
327 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
328 |
+
if masked_image_latents.shape[0] < batch_size:
|
329 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
330 |
+
raise ValueError(
|
331 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
332 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
333 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
334 |
+
)
|
335 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
336 |
+
|
337 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
338 |
+
masked_image_latents = (
|
339 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
340 |
+
)
|
341 |
+
|
342 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
343 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
344 |
+
return mask, masked_image_latents
|
345 |
+
|
346 |
+
# Adapted from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
347 |
+
def prepare_control_image(
|
348 |
+
self,
|
349 |
+
image,
|
350 |
+
width,
|
351 |
+
height,
|
352 |
+
batch_size,
|
353 |
+
num_images_per_prompt,
|
354 |
+
device,
|
355 |
+
dtype,
|
356 |
+
do_classifier_free_guidance=False,
|
357 |
+
):
|
358 |
+
'''
|
359 |
+
image = self.control_image_processor.preprocess(
|
360 |
+
image,
|
361 |
+
height=height,
|
362 |
+
width=width,
|
363 |
+
#size={"width": width, "height": height},
|
364 |
+
do_rescale=True,
|
365 |
+
do_center_crop=False,
|
366 |
+
do_normalize=False,
|
367 |
+
return_tensors="pt",
|
368 |
+
)["pixel_values"].to(device)
|
369 |
+
'''
|
370 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
371 |
+
image_batch_size = image.shape[0]
|
372 |
+
|
373 |
+
if image_batch_size == 1:
|
374 |
+
repeat_by = batch_size
|
375 |
+
else:
|
376 |
+
# image batch size is the same as prompt batch size
|
377 |
+
repeat_by = num_images_per_prompt
|
378 |
+
|
379 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
380 |
+
|
381 |
+
image = image.to(device=device, dtype=dtype)
|
382 |
+
|
383 |
+
if do_classifier_free_guidance:
|
384 |
+
image = torch.cat([image] * 2)
|
385 |
+
|
386 |
+
return image
|
387 |
+
|
388 |
+
@torch.no_grad()
|
389 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
390 |
+
def __call__(
|
391 |
+
self,
|
392 |
+
prompt: List[str],
|
393 |
+
reference_image: PIL.Image.Image,
|
394 |
+
condtioning_image: PIL.Image.Image,
|
395 |
+
source_subject_category: List[str],
|
396 |
+
target_subject_category: List[str],
|
397 |
+
image: PipelineImageInput = None,
|
398 |
+
mask_image: PipelineImageInput = None,
|
399 |
+
latents: Optional[torch.FloatTensor] = None,
|
400 |
+
guidance_scale: float = 7.5,
|
401 |
+
height: int = 512,
|
402 |
+
width: int = 512,
|
403 |
+
num_inference_steps: int = 50,
|
404 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
405 |
+
neg_prompt: Optional[str] = "",
|
406 |
+
prompt_strength: float = 1.0,
|
407 |
+
strength: float = 1.0,
|
408 |
+
num_images_per_prompt: Optional[int] = 1,
|
409 |
+
prompt_reps: int = 20,
|
410 |
+
output_type: Optional[str] = "pil",
|
411 |
+
return_dict: bool = True,
|
412 |
+
):
|
413 |
+
"""
|
414 |
+
Function invoked when calling the pipeline for generation.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
prompt (`List[str]`):
|
418 |
+
The prompt or prompts to guide the image generation.
|
419 |
+
reference_image (`PIL.Image.Image`):
|
420 |
+
The reference image to condition the generation on.
|
421 |
+
condtioning_image (`PIL.Image.Image`):
|
422 |
+
The conditioning canny edge image to condition the generation on.
|
423 |
+
source_subject_category (`List[str]`):
|
424 |
+
The source subject category.
|
425 |
+
target_subject_category (`List[str]`):
|
426 |
+
The target subject category.
|
427 |
+
latents (`torch.FloatTensor`, *optional*):
|
428 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
429 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
430 |
+
tensor will ge generated by random sampling.
|
431 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
432 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
433 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
434 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
435 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
436 |
+
usually at the expense of lower image quality.
|
437 |
+
height (`int`, *optional*, defaults to 512):
|
438 |
+
The height of the generated image.
|
439 |
+
width (`int`, *optional*, defaults to 512):
|
440 |
+
The width of the generated image.
|
441 |
+
seed (`int`, *optional*, defaults to 42):
|
442 |
+
The seed to use for random generation.
|
443 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
444 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
445 |
+
expense of slower inference.
|
446 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
447 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
448 |
+
to make generation deterministic.
|
449 |
+
neg_prompt (`str`, *optional*, defaults to ""):
|
450 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
451 |
+
if `guidance_scale` is less than `1`).
|
452 |
+
prompt_strength (`float`, *optional*, defaults to 1.0):
|
453 |
+
The strength of the prompt. Specifies the number of times the prompt is repeated along with prompt_reps
|
454 |
+
to amplify the prompt.
|
455 |
+
prompt_reps (`int`, *optional*, defaults to 20):
|
456 |
+
The number of times the prompt is repeated along with prompt_strength to amplify the prompt.
|
457 |
+
Examples:
|
458 |
+
|
459 |
+
Returns:
|
460 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`
|
461 |
+
"""
|
462 |
+
device = self._execution_device
|
463 |
+
|
464 |
+
reference_image = self.image_processor.preprocess(
|
465 |
+
reference_image, image_mean=self.config.mean, image_std=self.config.std, return_tensors="pt"
|
466 |
+
)["pixel_values"]
|
467 |
+
reference_image = reference_image.to(device)
|
468 |
+
|
469 |
+
if isinstance(prompt, str):
|
470 |
+
prompt = [prompt]
|
471 |
+
if isinstance(source_subject_category, str):
|
472 |
+
source_subject_category = [source_subject_category]
|
473 |
+
if isinstance(target_subject_category, str):
|
474 |
+
target_subject_category = [target_subject_category]
|
475 |
+
|
476 |
+
batch_size = len(prompt)
|
477 |
+
|
478 |
+
prompt = self._build_prompt(
|
479 |
+
prompts=prompt,
|
480 |
+
tgt_subjects=target_subject_category,
|
481 |
+
prompt_strength=prompt_strength,
|
482 |
+
prompt_reps=prompt_reps,
|
483 |
+
)
|
484 |
+
query_embeds = self.get_query_embeddings(reference_image, source_subject_category)
|
485 |
+
text_embeddings = self.encode_prompt(query_embeds, prompt, device)
|
486 |
+
# 3. unconditional embedding
|
487 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
488 |
+
if do_classifier_free_guidance:
|
489 |
+
max_length = self.text_encoder.text_model.config.max_position_embeddings
|
490 |
+
|
491 |
+
uncond_input = self.tokenizer(
|
492 |
+
[neg_prompt] * batch_size,
|
493 |
+
padding="max_length",
|
494 |
+
max_length=max_length,
|
495 |
+
return_tensors="pt",
|
496 |
+
)
|
497 |
+
uncond_embeddings = self.text_encoder(
|
498 |
+
input_ids=uncond_input.input_ids.to(device),
|
499 |
+
ctx_embeddings=None,
|
500 |
+
)[0]
|
501 |
+
# For classifier free guidance, we need to do two forward passes.
|
502 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
503 |
+
# to avoid doing two forward passes
|
504 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
505 |
+
|
506 |
+
# 4. Set condition image
|
507 |
+
cond_image = self.prepare_control_image(
|
508 |
+
image=condtioning_image,
|
509 |
+
width=width,
|
510 |
+
height=height,
|
511 |
+
batch_size=batch_size,
|
512 |
+
num_images_per_prompt=1,
|
513 |
+
device=device,
|
514 |
+
dtype=self.controlnet.dtype,
|
515 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
516 |
+
)
|
517 |
+
|
518 |
+
# 4. Preprocess mask and image - resizes image and mask w.r.t height and width
|
519 |
+
# set init image
|
520 |
+
init_image = self.init_processor.preprocess(image, height=height, width=width)
|
521 |
+
init_image = init_image.to(dtype=torch.float32)
|
522 |
+
|
523 |
+
mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
|
524 |
+
|
525 |
+
masked_image = init_image * (mask < 0.5)
|
526 |
+
_, _, height, width = init_image.shape
|
527 |
+
|
528 |
+
# 5. Set timesteps
|
529 |
+
extra_set_kwargs = {}
|
530 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
531 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
532 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
533 |
+
)
|
534 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
535 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
536 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
537 |
+
is_strength_max = strength == 1.0
|
538 |
+
|
539 |
+
# 6. Prepare latent variables
|
540 |
+
num_channels_latents = self.vae.config.latent_channels
|
541 |
+
num_channels_unet = self.unet.config.in_channels
|
542 |
+
return_image_latents = num_channels_unet == 4
|
543 |
+
|
544 |
+
# latents
|
545 |
+
scale_down_factor = 2 ** (len(self.unet.config.block_out_channels) - 1)
|
546 |
+
'''
|
547 |
+
latents = self.prepare_latents(
|
548 |
+
batch_size=batch_size,
|
549 |
+
num_channels=self.unet.config.in_channels,
|
550 |
+
height=height // scale_down_factor,
|
551 |
+
width=width // scale_down_factor,
|
552 |
+
generator=generator,
|
553 |
+
latents=latents,
|
554 |
+
dtype=self.unet.dtype,
|
555 |
+
device=device,
|
556 |
+
image=init_image,
|
557 |
+
)
|
558 |
+
'''
|
559 |
+
latents_outputs = self.prepare_latents(
|
560 |
+
batch_size,
|
561 |
+
num_channels_latents,
|
562 |
+
height,
|
563 |
+
width,
|
564 |
+
text_embeddings.dtype,
|
565 |
+
device,
|
566 |
+
generator,
|
567 |
+
latents,
|
568 |
+
image=init_image,
|
569 |
+
timestep=latent_timestep,
|
570 |
+
is_strength_max=is_strength_max,
|
571 |
+
return_noise=True,
|
572 |
+
return_image_latents=return_image_latents,
|
573 |
+
)
|
574 |
+
|
575 |
+
if return_image_latents:
|
576 |
+
latents, noise, image_latents = latents_outputs
|
577 |
+
else:
|
578 |
+
latents, noise = latents_outputs
|
579 |
+
|
580 |
+
# 7. Prepare mask latent variables
|
581 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
582 |
+
mask,
|
583 |
+
masked_image,
|
584 |
+
batch_size,
|
585 |
+
height,
|
586 |
+
width,
|
587 |
+
text_embeddings.dtype,
|
588 |
+
device,
|
589 |
+
generator,
|
590 |
+
do_classifier_free_guidance,
|
591 |
+
)
|
592 |
+
|
593 |
+
# 8. Denoising loop
|
594 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
595 |
+
# expand the latents if we are doing classifier free guidance
|
596 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
597 |
+
|
598 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
599 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
600 |
+
|
601 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
602 |
+
latent_model_input,
|
603 |
+
t,
|
604 |
+
encoder_hidden_states=text_embeddings,
|
605 |
+
controlnet_cond=cond_image,
|
606 |
+
return_dict=False,
|
607 |
+
)
|
608 |
+
|
609 |
+
noise_pred = self.unet(
|
610 |
+
latent_model_input,
|
611 |
+
timestep=t,
|
612 |
+
encoder_hidden_states=text_embeddings,
|
613 |
+
down_block_additional_residuals=down_block_res_samples,
|
614 |
+
mid_block_additional_residual=mid_block_res_sample,
|
615 |
+
)["sample"]
|
616 |
+
|
617 |
+
# perform guidance
|
618 |
+
if do_classifier_free_guidance:
|
619 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
620 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
621 |
+
|
622 |
+
latents = self.scheduler.step(
|
623 |
+
noise_pred,
|
624 |
+
t,
|
625 |
+
latents,
|
626 |
+
)["prev_sample"]
|
627 |
+
|
628 |
+
if num_channels_unet == 4:
|
629 |
+
init_latents_proper = image_latents
|
630 |
+
if do_classifier_free_guidance:
|
631 |
+
init_mask, _ = mask.chunk(2)
|
632 |
+
else:
|
633 |
+
init_mask = mask
|
634 |
+
|
635 |
+
if i < len(timesteps) - 1:
|
636 |
+
noise_timestep = timesteps[i + 1]
|
637 |
+
init_latents_proper = self.scheduler.add_noise(
|
638 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
639 |
+
)
|
640 |
+
|
641 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
642 |
+
|
643 |
+
|
644 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
645 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
646 |
+
|
647 |
+
# Offload all models
|
648 |
+
self.maybe_free_model_hooks()
|
649 |
+
|
650 |
+
if not return_dict:
|
651 |
+
return (image,)
|
652 |
+
|
653 |
+
return ImagePipelineOutput(images=image)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch==2.0.1
|
3 |
+
-e git+https://github.com/huggingface/diffusers.git#egg=diffusers
|
4 |
+
pillow
|
5 |
+
numpy
|
6 |
+
gradio
|
7 |
+
accelerate
|