File size: 4,204 Bytes
a32f23a
 
 
 
 
bb4a0a3
 
 
83b3367
 
bb4a0a3
 
 
83b3367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb4a0a3
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
 
 
 
 
 
 
 
 
 
 
 
bb4a0a3
 
83b3367
bb4a0a3
 
 
 
83b3367
bb4a0a3
83b3367
 
 
 
 
bb4a0a3
83b3367
bb4a0a3
 
 
 
 
 
 
83b3367
 
 
bb4a0a3
 
 
83b3367
bb4a0a3
 
 
 
 
 
83b3367
bb4a0a3
 
 
 
 
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
 
83b3367
 
 
 
bb4a0a3
 
83b3367
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# 1. spacesを最初にインポート
import spaces
# 2. その後で他のGPU関連のライブラリをインポート
import torch
import transformers
import gradio as gr
import numpy as np
import random
#from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

#pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = StableDiffusionXLPipeline.from_pretrained(
    #"yodayo-ai/kivotos-xl-2.0", 
    "Laxhar/noobai-XL-1.0", 
    torch_dtype=torch.float16, 
    use_safetensors=True,
    custom_pipeline="lpw_stable_diffusion_xl",
    add_watermarker=False,
    variant="fp16"
)
pipe.to('cuda')

prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
negative_prompt = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres", 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Demo
        using [noobai XL 1.0](https://huggingface.co/Laxhar/noobai-XL-1.0)
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=832,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1216,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()