xbarusui commited on
Commit
83b3367
·
verified ·
1 Parent(s): 13297e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -83
app.py CHANGED
@@ -1,74 +1,67 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
-
39
  generator = torch.Generator().manual_seed(seed)
40
-
41
  image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
 
71
  with gr.Row():
 
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
@@ -76,19 +69,20 @@ with gr.Blocks(css=css) as demo:
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
 
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
  visible=False,
90
  )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -96,59 +90,49 @@ with gr.Blocks(css=css) as demo:
96
  step=1,
97
  value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
  with gr.Row():
 
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
-
119
  with gr.Row():
 
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
- maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
-
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
- maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ #from diffusers import DiffusionPipeline
5
+ from diffusers import StableDiffusionXLPipeline
 
6
  import torch
7
+ import spaces
8
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  MAX_SEED = np.iinfo(np.int32).max
11
+ MAX_IMAGE_SIZE = 1216
12
+
13
+ #pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
14
+ pipe = StableDiffusionXLPipeline.from_pretrained(
15
+ #"yodayo-ai/kivotos-xl-2.0",
16
+ "Laxhar/noobai-XL-1.0",
17
+ torch_dtype=torch.float16,
18
+ use_safetensors=True,
19
+ custom_pipeline="lpw_stable_diffusion_xl",
20
+ add_watermarker=False,
21
+ variant="fp16"
22
+ )
23
+ pipe.to('cuda')
24
+
25
+ prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
26
+ negative_prompt = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
27
+
28
+ @spaces.GPU
29
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  if randomize_seed:
32
  seed = random.randint(0, MAX_SEED)
33
+
34
  generator = torch.Generator().manual_seed(seed)
35
+
36
  image = pipe(
37
+ prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres",
38
+ negative_prompt = negative_prompt,
39
+ guidance_scale = guidance_scale,
40
+ num_inference_steps = num_inference_steps,
41
+ width = width,
42
+ height = height,
43
+ generator = generator
44
+ ).images[0]
45
+
46
+ return image
47
+
48
+ css="""
 
 
 
 
 
 
 
49
  #col-container {
50
  margin: 0 auto;
51
+ max-width: 520px;
52
  }
53
  """
54
 
55
  with gr.Blocks(css=css) as demo:
56
+
57
  with gr.Column(elem_id="col-container"):
58
+ gr.Markdown(f"""
59
+ # Text-to-Image Demo
60
+ using [noobai XL 1.0](https://huggingface.co/Laxhar/noobai-XL-1.0)
61
+ """)
62
+
63
  with gr.Row():
64
+
65
  prompt = gr.Text(
66
  label="Prompt",
67
  show_label=False,
 
69
  placeholder="Enter your prompt",
70
  container=False,
71
  )
72
+
73
+ run_button = gr.Button("Run", scale=0)
74
+
75
  result = gr.Image(label="Result", show_label=False)
76
 
77
  with gr.Accordion("Advanced Settings", open=False):
78
+
79
  negative_prompt = gr.Text(
80
  label="Negative prompt",
81
  max_lines=1,
82
  placeholder="Enter a negative prompt",
83
  visible=False,
84
  )
85
+
86
  seed = gr.Slider(
87
  label="Seed",
88
  minimum=0,
 
90
  step=1,
91
  value=0,
92
  )
93
+
94
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
95
+
96
  with gr.Row():
97
+
98
  width = gr.Slider(
99
  label="Width",
100
  minimum=256,
101
  maximum=MAX_IMAGE_SIZE,
102
  step=32,
103
+ value=832,
104
  )
105
+
106
  height = gr.Slider(
107
  label="Height",
108
  minimum=256,
109
  maximum=MAX_IMAGE_SIZE,
110
  step=32,
111
+ value=1216,
112
  )
113
+
114
  with gr.Row():
115
+
116
  guidance_scale = gr.Slider(
117
  label="Guidance scale",
118
  minimum=0.0,
119
+ maximum=20.0,
120
  step=0.1,
121
+ value=7,
122
  )
123
+
124
  num_inference_steps = gr.Slider(
125
  label="Number of inference steps",
126
  minimum=1,
127
+ maximum=28,
128
  step=1,
129
+ value=28,
130
  )
131
 
132
+ run_button.click(
133
+ fn = infer,
134
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
135
+ outputs = [result]
 
 
 
 
 
 
 
 
 
 
 
136
  )
137
 
138
+ demo.queue().launch()