test / direct3d_s2 /modules /sparse /conv /conv_torchsparse.py
wushuang98's picture
Upload 197 files
bcb05d1 verified
import torch
import torch.nn as nn
from .. import SparseTensor
from torchsparse.utils import make_ntuple
def sparseconv3d_func(input: SparseTensor, weight: torch.Tensor, kernel_size: int, stride: int = 1, dilation: int = 1, padding: int = 0, bias: torch.Tensor = None, training: bool = True):
if 'torchsparse' not in globals():
import torchsparse
stride = make_ntuple(stride, ndim=3)
kernel_size = make_ntuple(kernel_size, ndim=3)
_padding = make_ntuple(padding, 3)
padding = ()
for i in range(3):
if kernel_size[i] % 2 == 1 and stride[i] == 1:
padding += ((kernel_size[i] - 1) // 2,)
else:
padding += (_padding[i],)
out = torchsparse.nn.functional.conv3d(input.data, weight, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, training=training)
spatial_range = out.spatial_range
new_shape = [input.shape[0], weight.shape[1]]
out = SparseTensor(out, shape=torch.Size(new_shape), layout=input.layout if all(s == 1 for s in stride) else None)
out._spatial_cache = input._spatial_cache
out._scale = tuple([s * stride for s, stride in zip(input._scale, stride)])
out.data.spatial_range = spatial_range
return out
class SparseConv3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, bias=True, indice_key=None):
super(SparseConv3d, self).__init__()
if 'torchsparse' not in globals():
import torchsparse
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias)
def forward(self, x: SparseTensor) -> SparseTensor:
out = self.conv(x.data)
spatial_range = out.spatial_range
new_shape = [x.shape[0], self.conv.out_channels]
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
out._spatial_cache = x._spatial_cache
out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)])
out.data.spatial_range = spatial_range
return out
class SparseInverseConv3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
super(SparseInverseConv3d, self).__init__()
if 'torchsparse' not in globals():
import torchsparse
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True)
def forward(self, x: SparseTensor) -> SparseTensor:
out = self.conv(x.data)
new_shape = [x.shape[0], self.conv.out_channels]
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
out._spatial_cache = x._spatial_cache
out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)])
return out