import torch import torch.nn as nn from .. import SparseTensor from torchsparse.utils import make_ntuple def sparseconv3d_func(input: SparseTensor, weight: torch.Tensor, kernel_size: int, stride: int = 1, dilation: int = 1, padding: int = 0, bias: torch.Tensor = None, training: bool = True): if 'torchsparse' not in globals(): import torchsparse stride = make_ntuple(stride, ndim=3) kernel_size = make_ntuple(kernel_size, ndim=3) _padding = make_ntuple(padding, 3) padding = () for i in range(3): if kernel_size[i] % 2 == 1 and stride[i] == 1: padding += ((kernel_size[i] - 1) // 2,) else: padding += (_padding[i],) out = torchsparse.nn.functional.conv3d(input.data, weight, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, training=training) spatial_range = out.spatial_range new_shape = [input.shape[0], weight.shape[1]] out = SparseTensor(out, shape=torch.Size(new_shape), layout=input.layout if all(s == 1 for s in stride) else None) out._spatial_cache = input._spatial_cache out._scale = tuple([s * stride for s, stride in zip(input._scale, stride)]) out.data.spatial_range = spatial_range return out class SparseConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, bias=True, indice_key=None): super(SparseConv3d, self).__init__() if 'torchsparse' not in globals(): import torchsparse self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias) def forward(self, x: SparseTensor) -> SparseTensor: out = self.conv(x.data) spatial_range = out.spatial_range new_shape = [x.shape[0], self.conv.out_channels] out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None) out._spatial_cache = x._spatial_cache out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)]) out.data.spatial_range = spatial_range return out class SparseInverseConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None): super(SparseInverseConv3d, self).__init__() if 'torchsparse' not in globals(): import torchsparse self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True) def forward(self, x: SparseTensor) -> SparseTensor: out = self.conv(x.data) new_shape = [x.shape[0], self.conv.out_channels] out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None) out._spatial_cache = x._spatial_cache out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)]) return out