wishwakankanamg commited on
Commit
5c274bd
·
1 Parent(s): 3b22917
Files changed (1) hide show
  1. agent.py +25 -25
agent.py CHANGED
@@ -121,21 +121,21 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
121
  sys_msg = SystemMessage(content=system_prompt)
122
 
123
  # build a retriever
124
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
125
- supabase: Client = create_client(
126
- os.environ.get("SUPABASE_URL"),
127
- os.environ.get("SUPABASE_SERVICE_KEY"))
128
- vector_store = SupabaseVectorStore(
129
- client=supabase,
130
- embedding= embeddings,
131
- table_name="documents",
132
- query_name="match_documents_langchain",
133
- )
134
- create_retriever_tool = create_retriever_tool(
135
- retriever=vector_store.as_retriever(),
136
- name="Question Search",
137
- description="A tool to retrieve similar questions from a vector store.",
138
- )
139
 
140
 
141
 
@@ -178,20 +178,20 @@ def build_graph(provider: str = "groq"):
178
  """Assistant node"""
179
  return {"messages": [llm_with_tools.invoke(state["messages"])]}
180
 
181
- def retriever(state: MessagesState):
182
- """Retriever node"""
183
- similar_question = vector_store.similarity_search(state["messages"][0].content)
184
- example_msg = HumanMessage(
185
- content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
186
- )
187
- return {"messages": [sys_msg] + state["messages"] + [example_msg]}
188
 
189
  builder = StateGraph(MessagesState)
190
- builder.add_node("retriever", retriever)
191
  builder.add_node("assistant", assistant)
192
  builder.add_node("tools", ToolNode(tools))
193
- builder.add_edge(START, "retriever")
194
- builder.add_edge("retriever", "assistant")
195
  builder.add_conditional_edges(
196
  "assistant",
197
  tools_condition,
 
121
  sys_msg = SystemMessage(content=system_prompt)
122
 
123
  # build a retriever
124
+ # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
125
+ # supabase: Client = create_client(
126
+ # os.environ.get("SUPABASE_URL"),
127
+ # os.environ.get("SUPABASE_SERVICE_KEY"))
128
+ # vector_store = SupabaseVectorStore(
129
+ # client=supabase,
130
+ # embedding= embeddings,
131
+ # table_name="documents",
132
+ # query_name="match_documents_langchain",
133
+ # )
134
+ # create_retriever_tool = create_retriever_tool(
135
+ # retriever=vector_store.as_retriever(),
136
+ # name="Question Search",
137
+ # description="A tool to retrieve similar questions from a vector store.",
138
+ # )
139
 
140
 
141
 
 
178
  """Assistant node"""
179
  return {"messages": [llm_with_tools.invoke(state["messages"])]}
180
 
181
+ # def retriever(state: MessagesState):
182
+ # """Retriever node"""
183
+ # similar_question = vector_store.similarity_search(state["messages"][0].content)
184
+ # example_msg = HumanMessage(
185
+ # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
186
+ # )
187
+ # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
188
 
189
  builder = StateGraph(MessagesState)
190
+ # builder.add_node("retriever", retriever)
191
  builder.add_node("assistant", assistant)
192
  builder.add_node("tools", ToolNode(tools))
193
+ builder.add_edge(START, "assistant")
194
+ # builder.add_edge("retriever", "assistant")
195
  builder.add_conditional_edges(
196
  "assistant",
197
  tools_condition,