Spaces:
Running
Running
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
from sklearn.cluster import KMeans | |
from transformers import pipeline | |
from prophet import Prophet | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
# model | |
embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
sentiment_model = pipeline( | |
"text-classification", | |
model="uer/roberta-base-finetuned-dianping-chinese", | |
tokenizer="uer/roberta-base-finetuned-dianping-chinese" | |
) | |
#main | |
def full_pipeline(file, num_clusters): | |
df = pd.read_csv(file) | |
if "text" not in df.columns: | |
return "❌ 錯誤:CSV 檔案需包含 text 欄位" | |
if "timestamp" not in df.columns: | |
return "❌ 錯誤:CSV 檔案需包含 timestamp 欄位(例如新聞時間)" | |
#降維 | |
texts = df["text"].astype(str).tolist() | |
embeddings = embedder.encode(texts, show_progress_bar=True) | |
kmeans = KMeans(n_clusters=num_clusters, random_state=42) | |
df["topic"] = kmeans.fit_predict(embeddings) | |
# 情緒分析 | |
sentiments = [] | |
for text in texts: | |
try: | |
result = sentiment_model(text)[0] | |
label = result["label"] | |
if label == "LABEL_0": | |
sentiment = "負向" | |
elif label == "LABEL_1": | |
sentiment = "中立" | |
elif label == "LABEL_2": | |
sentiment = "正向" | |
else: | |
sentiment = "未知" | |
except: | |
sentiment = "錯誤" | |
sentiments.append(sentiment) | |
df["sentiment"] = sentiments | |
# 熱度預測 | |
df["timestamp"] = pd.to_datetime(df["timestamp"]) | |
topic0 = df[df["topic"] == 0] | |
daily_counts = topic0.groupby(df["timestamp"].dt.date).size().reset_index(name="count") | |
daily_counts.columns = ["ds", "y"] | |
if len(daily_counts) < 2: | |
return "❌ 無法預測:topic=0 數據太少" | |
m = Prophet() | |
m.fit(daily_counts) | |
future = m.make_future_dataframe(periods=7) | |
forecast = m.predict(future) | |
fig = m.plot(forecast) | |
#output | |
output_csv = "/tmp/final_output.csv" | |
output_img = "/tmp/forecast.png" | |
df.to_csv(output_csv, index=False) | |
fig.savefig(output_img) | |
return output_csv, output_img | |
#gradio | |
gr.Interface( | |
fn=full_pipeline, | |
inputs=[ | |
gr.File(label="上傳 CSV(需含 text 與 timestamp 欄)"), | |
gr.Number(label="分幾群?(聚類數)", value=5) | |
], | |
outputs=[ | |
gr.File(label="結果 CSV(含 topic, sentiment)"), | |
gr.Image(label="topic=0 熱度預測圖(Prophet)") | |
], | |
title="話題雷達", | |
description="自動分群、分析情緒,並預測熱度走勢(topic=0 為例)" | |
).launch() |