1234 / app.py
william1324's picture
Update app.py
a5dc391 verified
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.cluster import KMeans
from transformers import pipeline
from prophet import Prophet
import matplotlib.pyplot as plt
import gradio as gr
# model
embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
sentiment_model = pipeline(
"text-classification",
model="uer/roberta-base-finetuned-dianping-chinese",
tokenizer="uer/roberta-base-finetuned-dianping-chinese"
)
#main
def full_pipeline(file, num_clusters):
df = pd.read_csv(file)
if "text" not in df.columns:
return "❌ 錯誤:CSV 檔案需包含 text 欄位"
if "timestamp" not in df.columns:
return "❌ 錯誤:CSV 檔案需包含 timestamp 欄位(例如新聞時間)"
#降維
texts = df["text"].astype(str).tolist()
embeddings = embedder.encode(texts, show_progress_bar=True)
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
df["topic"] = kmeans.fit_predict(embeddings)
# 情緒分析
sentiments = []
for text in texts:
try:
result = sentiment_model(text)[0]
label = result["label"]
if label == "LABEL_0":
sentiment = "負向"
elif label == "LABEL_1":
sentiment = "中立"
elif label == "LABEL_2":
sentiment = "正向"
else:
sentiment = "未知"
except:
sentiment = "錯誤"
sentiments.append(sentiment)
df["sentiment"] = sentiments
# 熱度預測
df["timestamp"] = pd.to_datetime(df["timestamp"])
topic0 = df[df["topic"] == 0]
daily_counts = topic0.groupby(df["timestamp"].dt.date).size().reset_index(name="count")
daily_counts.columns = ["ds", "y"]
if len(daily_counts) < 2:
return "❌ 無法預測:topic=0 數據太少"
m = Prophet()
m.fit(daily_counts)
future = m.make_future_dataframe(periods=7)
forecast = m.predict(future)
fig = m.plot(forecast)
#output
output_csv = "/tmp/final_output.csv"
output_img = "/tmp/forecast.png"
df.to_csv(output_csv, index=False)
fig.savefig(output_img)
return output_csv, output_img
#gradio
gr.Interface(
fn=full_pipeline,
inputs=[
gr.File(label="上傳 CSV(需含 text 與 timestamp 欄)"),
gr.Number(label="分幾群?(聚類數)", value=5)
],
outputs=[
gr.File(label="結果 CSV(含 topic, sentiment)"),
gr.Image(label="topic=0 熱度預測圖(Prophet)")
],
title="話題雷達",
description="自動分群、分析情緒,並預測熱度走勢(topic=0 為例)"
).launch()