import pandas as pd from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from transformers import pipeline from prophet import Prophet import matplotlib.pyplot as plt import gradio as gr # model embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") sentiment_model = pipeline( "text-classification", model="uer/roberta-base-finetuned-dianping-chinese", tokenizer="uer/roberta-base-finetuned-dianping-chinese" ) #main def full_pipeline(file, num_clusters): df = pd.read_csv(file) if "text" not in df.columns: return "❌ 錯誤:CSV 檔案需包含 text 欄位" if "timestamp" not in df.columns: return "❌ 錯誤:CSV 檔案需包含 timestamp 欄位(例如新聞時間)" #降維 texts = df["text"].astype(str).tolist() embeddings = embedder.encode(texts, show_progress_bar=True) kmeans = KMeans(n_clusters=num_clusters, random_state=42) df["topic"] = kmeans.fit_predict(embeddings) # 情緒分析 sentiments = [] for text in texts: try: result = sentiment_model(text)[0] label = result["label"] if label == "LABEL_0": sentiment = "負向" elif label == "LABEL_1": sentiment = "中立" elif label == "LABEL_2": sentiment = "正向" else: sentiment = "未知" except: sentiment = "錯誤" sentiments.append(sentiment) df["sentiment"] = sentiments # 熱度預測 df["timestamp"] = pd.to_datetime(df["timestamp"]) topic0 = df[df["topic"] == 0] daily_counts = topic0.groupby(df["timestamp"].dt.date).size().reset_index(name="count") daily_counts.columns = ["ds", "y"] if len(daily_counts) < 2: return "❌ 無法預測:topic=0 數據太少" m = Prophet() m.fit(daily_counts) future = m.make_future_dataframe(periods=7) forecast = m.predict(future) fig = m.plot(forecast) #output output_csv = "/tmp/final_output.csv" output_img = "/tmp/forecast.png" df.to_csv(output_csv, index=False) fig.savefig(output_img) return output_csv, output_img #gradio gr.Interface( fn=full_pipeline, inputs=[ gr.File(label="上傳 CSV(需含 text 與 timestamp 欄)"), gr.Number(label="分幾群?(聚類數)", value=5) ], outputs=[ gr.File(label="結果 CSV(含 topic, sentiment)"), gr.Image(label="topic=0 熱度預測圖(Prophet)") ], title="話題雷達", description="自動分群、分析情緒,並預測熱度走勢(topic=0 為例)" ).launch()