Spaces:
Running
Running
import gradio as gr | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from pathlib import Path | |
# Load DETR model and processor from Hugging Face | |
model_name = "facebook/detr-resnet-50" | |
processor = DetrImageProcessor.from_pretrained(model_name) | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
# Load font | |
font_path = Path("assets/fonts/arial.ttf") | |
if not font_path.exists(): | |
# If the font file does not exist, use the default PIL font | |
print(f"Font file {font_path} not found. Using default font.") | |
font = ImageFont.load_default() | |
else: | |
font = ImageFont.truetype(str(font_path), size=100) | |
print(f"CUDA is available: {torch.cuda.is_available()}") | |
# Main function: takes an image and returns it with boxes and labels | |
def detect_objects(image): | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# Convert model output to usable detection results | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection( | |
outputs, threshold=0.9, target_sizes=target_sizes | |
)[0] | |
# Draw bounding boxes and labels on a copy of the image | |
image_with_boxes = image.copy() | |
draw = ImageDraw.Draw(image_with_boxes) | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(x, 2) for x in box.tolist()] | |
draw.rectangle(box, outline="red", width=3) | |
# Prepare label text | |
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}" | |
# Measure text size | |
text_bbox = draw.textbbox((0, 0), label_text, font=font) | |
text_width = text_bbox[2] - text_bbox[0] | |
text_height = text_bbox[3] - text_bbox[1] | |
# Set background rectangle for text | |
text_background = [ | |
box[0], box[1] - text_height, | |
box[0] + text_width, box[1] | |
] | |
draw.rectangle(text_background, fill="black") # Background | |
draw.text((box[0], box[1] - text_height), label_text, fill="white", font=font) | |
return image_with_boxes | |
with gr.Blocks() as app: | |
with gr.Row(): | |
gr.Markdown("## Object Detection App\nUpload an image to detect objects using Facebook's DETR model.") | |
with gr.Row(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
output_image = gr.Image(label="Detected Objects") | |
with gr.Row(): | |
button = gr.Button("Detect Objects") | |
button.click(fn=detect_objects, inputs=input_image, outputs=output_image) | |
if __name__ == "__main__": | |
app.launch() | |