import gradio as gr import torch from PIL import Image, ImageDraw, ImageFont from transformers import DetrImageProcessor, DetrForObjectDetection from pathlib import Path # Load DETR model and processor from Hugging Face model_name = "facebook/detr-resnet-50" processor = DetrImageProcessor.from_pretrained(model_name) model = DetrForObjectDetection.from_pretrained(model_name) # Load font font_path = Path("assets/fonts/arial.ttf") if not font_path.exists(): # If the font file does not exist, use the default PIL font print(f"Font file {font_path} not found. Using default font.") font = ImageFont.load_default() else: font = ImageFont.truetype(str(font_path), size=100) print(f"CUDA is available: {torch.cuda.is_available()}") # Main function: takes an image and returns it with boxes and labels def detect_objects(image): inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # Convert model output to usable detection results target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection( outputs, threshold=0.9, target_sizes=target_sizes )[0] # Draw bounding boxes and labels on a copy of the image image_with_boxes = image.copy() draw = ImageDraw.Draw(image_with_boxes) for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(x, 2) for x in box.tolist()] draw.rectangle(box, outline="red", width=3) # Prepare label text label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}" # Measure text size text_bbox = draw.textbbox((0, 0), label_text, font=font) text_width = text_bbox[2] - text_bbox[0] text_height = text_bbox[3] - text_bbox[1] # Set background rectangle for text text_background = [ box[0], box[1] - text_height, box[0] + text_width, box[1] ] draw.rectangle(text_background, fill="black") # Background draw.text((box[0], box[1] - text_height), label_text, fill="white", font=font) return image_with_boxes with gr.Blocks() as app: with gr.Row(): gr.Markdown("## Object Detection App\nUpload an image to detect objects using Facebook's DETR model.") with gr.Row(): input_image = gr.Image(type="pil", label="Input Image") output_image = gr.Image(label="Detected Objects") with gr.Row(): button = gr.Button("Detect Objects") button.click(fn=detect_objects, inputs=input_image, outputs=output_image) if __name__ == "__main__": app.launch()