File size: 19,115 Bytes
221337b
6ecfb14
53e14a8
221337b
4a473ee
 
a7e9383
 
cdb3339
a7e9383
 
6ecfb14
4a473ee
2e9147d
 
 
 
cdb3339
 
 
4a473ee
2e9147d
 
 
 
 
 
 
0b1e00c
2e9147d
4a473ee
cdb3339
4a473ee
2e9147d
4a473ee
 
2e9147d
cdb3339
2e9147d
 
 
 
4a473ee
 
cdb3339
4a473ee
2e9147d
221337b
0b1e00c
4a473ee
 
 
 
 
 
cdb3339
4a473ee
 
2e9147d
 
 
 
 
 
 
 
 
 
a7e9383
cdb3339
 
2e9147d
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e9383
cdb3339
 
2e9147d
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e9383
cdb3339
 
2e9147d
 
 
 
 
 
 
0b1e00c
2e9147d
 
 
0b1e00c
2e9147d
4a473ee
cdb3339
 
 
2e9147d
 
 
 
 
 
4a473ee
2e9147d
 
 
 
 
 
cdb3339
2e9147d
4a473ee
cdb3339
2e9147d
 
0b1e00c
2e9147d
4a473ee
2e9147d
 
 
 
 
 
4a473ee
 
2e9147d
 
 
4a473ee
 
2e9147d
 
4a473ee
 
2e9147d
 
0b1e00c
4a473ee
 
 
 
 
 
 
 
 
 
 
 
 
cdb3339
2e9147d
6ecfb14
0b1e00c
2e9147d
4a473ee
 
2e9147d
 
 
 
4a473ee
 
 
0b1e00c
82026bf
4a473ee
 
 
 
 
 
82026bf
4a473ee
 
2e9147d
0b1e00c
4a473ee
 
cdb3339
 
a7e9383
cdb3339
 
 
a7e9383
 
cdb3339
a7e9383
 
 
 
cdb3339
a7e9383
 
 
cdb3339
a7e9383
 
 
 
cdb3339
a7e9383
 
 
 
 
 
cdb3339
a7e9383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a473ee
cdb3339
 
 
 
0b1e00c
a7e9383
 
cdb3339
 
a7e9383
 
4a473ee
 
cdb3339
 
 
 
 
 
 
 
 
 
 
 
 
57d38ac
cdb3339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d38ac
 
cdb3339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a473ee
2e9147d
4a473ee
 
0b1e00c
2e9147d
 
 
 
 
 
 
 
 
 
cdb3339
2e9147d
 
 
 
 
 
cdb3339
2e9147d
 
 
0b1e00c
2e9147d
 
 
 
 
 
 
 
 
 
 
0b1e00c
a7e9383
 
 
 
 
 
 
 
 
 
cdb3339
 
 
 
 
 
 
 
 
a7e9383
cdb3339
 
4a473ee
 
2e9147d
 
4a473ee
57d38ac
 
 
 
 
 
 
 
 
 
 
 
 
e58f8da
2e9147d
0b1e00c
4a473ee
2e9147d
a7e9383
2e9147d
a7e9383
2e9147d
0b1e00c
cdb3339
 
 
 
 
 
2e9147d
221337b
0b1e00c
cdb3339
 
 
2e9147d
cdb3339
6ecfb14
4a473ee
221337b
2e9147d
e67d9d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import DetrImageProcessor, DetrForObjectDetection
from pathlib import Path
import transformers
import warnings
import traceback
import datetime

warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter.*")

# Global variables to cache models
current_model = None
current_processor = None
current_model_name = None

# Global debug state
debug_info = {"last_error": "", "step": "", "language": "", "timestamp": ""}

# Available models with better selection
available_models = {
    "DETR ResNet-50": "facebook/detr-resnet-50",
    "DETR ResNet-101": "facebook/detr-resnet-101",
    "DETR DC5": "facebook/detr-resnet-50-dc5",
    "DETR ResNet-50 Face Only": "esraakh/detr_fine_tune_face_detection_final"
}


def load_model(model_key):
    """Load model and processor based on selected model key"""
    global current_model, current_processor, current_model_name, debug_info

    model_name = available_models[model_key]

    # Only load if it's a different model
    if current_model_name != model_name:
        debug_info["step"] = f"Loading model: {model_name}"
        print(f"Loading model: {model_name}")
        current_processor = DetrImageProcessor.from_pretrained(model_name)
        current_model = DetrForObjectDetection.from_pretrained(model_name)
        current_model_name = model_name
        print(f"Model loaded: {model_name}")
        print(f"Available labels: {list(current_model.config.id2label.values())}")
        debug_info["step"] = f"Model loaded successfully: {model_name}"

    return current_model, current_processor


# Load font
font_path = Path("assets/fonts/arial.ttf")
if not font_path.exists():
    print(f"Font file {font_path} not found. Using default font.")
    font = ImageFont.load_default()
else:
    font = ImageFont.truetype(str(font_path), size=100)

# Set up translations for the app
translations = {
    "English": {
        "title": "## Enhanced Object Detection App\nUpload an image to detect objects using various DETR models.",
        "input_label": "Input Image",
        "output_label": "Detected Objects",
        "dropdown_label": "Label Language",
        "dropdown_detection_model_label": "Detection Model",
        "threshold_label": "Detection Threshold",
        "button": "Detect Objects",
        "info_label": "Detection Info",
        "error_label": "Error Messages",
        "debug_label": "Debug Status",
        "debug_button": "Show Debug Status",
        "model_fast": "General Objects (fast)",
        "model_precision": "General Objects (high precision)",
        "model_small": "Small Objects/Details (slow)",
        "model_faces": "Face Detection (people only)"
    },
    "Spanish": {
        "title": "## Aplicación Mejorada de Detección de Objetos\nSube una imagen para detectar objetos usando varios modelos DETR.",
        "input_label": "Imagen de entrada",
        "output_label": "Objetos detectados",
        "dropdown_label": "Idioma de las etiquetas",
        "dropdown_detection_model_label": "Modelo de detección",
        "threshold_label": "Umbral de detección",
        "button": "Detectar objetos",
        "info_label": "Información de detección",
        "error_label": "Mensajes de error",
        "debug_label": "Estado de depuración",
        "debug_button": "Mostrar estado de depuración",
        "model_fast": "Objetos generales (rápido)",
        "model_precision": "Objetos generales (precisión alta)",
        "model_small": "Objetos pequeños/detalles (lento)",
        "model_faces": "Detección de caras (solo personas)"
    },
    "French": {
        "title": "## Application Améliorée de Détection d'Objets\nTéléchargez une image pour détecter des objets avec divers modèles DETR.",
        "input_label": "Image d'entrée",
        "output_label": "Objets détectés",
        "dropdown_label": "Langue des étiquettes",
        "dropdown_detection_model_label": "Modèle de détection",
        "threshold_label": "Seuil de détection",
        "button": "Détecter les objets",
        "info_label": "Information de détection",
        "error_label": "Messages d'erreur",
        "debug_label": "État de débogage",
        "debug_button": "Afficher l'état de débogage",
        "model_fast": "Objets généraux (rapide)",
        "model_precision": "Objets généraux (haute précision)",
        "model_small": "Petits objets/détails (lent)",
        "model_faces": "Détection de visages (personnes uniquement)"
    }
}


def t(language, key):
    return translations.get(language, translations["English"]).get(key, key)


def get_translated_model_choices(language):
    """Get model choices translated to the selected language"""
    global debug_info
    debug_info["step"] = f"Translating model choices for {language}"

    model_mapping = {
        "DETR ResNet-50": "model_fast",
        "DETR ResNet-101": "model_precision",
        "DETR DC5": "model_small",
        "DETR ResNet-50 Face Only": "model_faces"
    }

    translated_choices = []
    for model_key in available_models.keys():
        if model_key in model_mapping:
            translation_key = model_mapping[model_key]
            translated_name = t(language, translation_key)
        else:
            translated_name = model_key
        translated_choices.append(translated_name)

    debug_info["step"] = f"Model choices translated: {translated_choices}"
    return translated_choices


def get_model_key_from_translation(translated_name, language):
    """Get the original model key from translated name"""
    model_mapping = {
        "DETR ResNet-50": "model_fast",
        "DETR ResNet-101": "model_precision",
        "DETR DC5": "model_small",
        "DETR ResNet-50 Face Only": "model_faces"
    }

    # Reverse lookup
    for model_key, translation_key in model_mapping.items():
        if t(language, translation_key) == translated_name:
            return model_key

    # If not found, try direct match
    if translated_name in available_models:
        return translated_name

    # Default fallback
    return "DETR ResNet-50"


def get_helsinki_model(language_label):
    """Returns the Helsinki-NLP model name for translating from English to the selected language."""
    lang_map = {
        "Spanish": "es",
        "French": "fr",
        "English": "en"
    }
    target = lang_map.get(language_label)
    if not target or target == "en":
        return None
    return f"Helsinki-NLP/opus-mt-en-{target}"


# Translation cache
translation_cache = {}


def translate_label(language_label, label):
    """Translates the given label to the target language."""
    # Check cache first
    cache_key = f"{language_label}_{label}"
    if cache_key in translation_cache:
        return translation_cache[cache_key]

    model_name = get_helsinki_model(language_label)
    if not model_name:
        return label

    try:
        translator = transformers.pipeline("translation", model=model_name)
        result = translator(label, max_length=40)
        translated = result[0]['translation_text']
        # Cache the result
        translation_cache[cache_key] = translated
        return translated
    except Exception as e:
        print(f"Translation error (429 or other): {e}")
        return label  # Return original if translation fails


def detect_objects(image, language_selector, translated_model_selector, threshold):
    """Enhanced object detection with adjustable threshold and better info"""
    global debug_info

    try:
        debug_info["step"] = "Starting object detection"
        debug_info["timestamp"] = str(datetime.datetime.now())

        # Get the actual model key from the translated name
        model_selector = get_model_key_from_translation(translated_model_selector, language_selector)
        debug_info["step"] = f"Model key resolved: {model_selector}"

        print(f"Processing image. Language: {language_selector}, Model: {model_selector}, Threshold: {threshold}")

        # Load the selected model
        debug_info["step"] = "Loading model"
        model, processor = load_model(model_selector)

        # Process the image
        debug_info["step"] = "Processing image with model"
        inputs = processor(images=image, return_tensors="pt")
        outputs = model(**inputs)

        # Convert model output to usable detection results with custom threshold
        debug_info["step"] = "Post-processing results"
        target_sizes = torch.tensor([image.size[::-1]])
        results = processor.post_process_object_detection(
            outputs, threshold=threshold, target_sizes=target_sizes
        )[0]

        # Create a copy of the image for drawing
        debug_info["step"] = "Drawing bounding boxes"
        image_with_boxes = image.copy()
        draw = ImageDraw.Draw(image_with_boxes)

        # Detection info
        detection_info = f"Detected {len(results['scores'])} objects with threshold {threshold}\n"
        detection_info += f"Model: {translated_model_selector} ({model_selector})\n\n"

        # Colors for different confidence levels
        colors = {
            'high': 'red',  # > 0.8
            'medium': 'orange',  # 0.5-0.8
            'low': 'yellow'  # < 0.5
        }

        detected_objects = []

        for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
            confidence = score.item()
            box = [round(x, 2) for x in box.tolist()]

            # Choose color based on confidence
            if confidence > 0.8:
                color = colors['high']
            elif confidence > 0.5:
                color = colors['medium']
            else:
                color = colors['low']

            # Draw bounding box
            draw.rectangle(box, outline=color, width=3)

            # Prepare label text
            label_text = model.config.id2label[label.item()]
            translated_label = translate_label(language_selector, label_text)
            display_text = f"{translated_label}: {round(confidence, 3)}"

            # Store detection info
            detected_objects.append({
                'label': label_text,
                'translated': translated_label,
                'confidence': confidence,
                'box': box
            })

            # Calculate text position and size
            try:
                text_bbox = draw.textbbox((0, 0), display_text, font=font)
                text_width = text_bbox[2] - text_bbox[0]
                text_height = text_bbox[3] - text_bbox[1]
            except:
                # Fallback for older PIL versions
                text_width, text_height = draw.textsize(display_text, font=font)

            # Draw text background
            text_bg = [
                box[0], box[1] - text_height - 4,
                        box[0] + text_width + 4, box[1]
            ]
            draw.rectangle(text_bg, fill="black")
            draw.text((box[0] + 2, box[1] - text_height - 2), display_text, fill="white", font=font)

        # Create detailed detection info
        if detected_objects:
            detection_info += "Objects found:\n"
            for obj in sorted(detected_objects, key=lambda x: x['confidence'], reverse=True):
                detection_info += f"- {obj['translated']} ({obj['label']}): {obj['confidence']:.3f}\n"
        else:
            detection_info += "No objects detected. Try lowering the threshold."

        debug_info["step"] = "Detection completed successfully"
        debug_info["last_error"] = ""

        return image_with_boxes, detection_info, ""

    except Exception as e:
        error_message = f"Error in object detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
        debug_info["last_error"] = error_message
        debug_info["step"] = f"ERROR in detection: {str(e)}"
        print(error_message)
        return image if image else None, "Detection failed. See error panel below.", error_message


def update_interface(selected_language):
    global debug_info

    debug_info["language"] = selected_language
    debug_info["timestamp"] = str(datetime.datetime.now())
    debug_info["step"] = "Starting language interface update"

    try:
        translated_choices = get_translated_model_choices(selected_language)
        default_model = t(selected_language, "model_fast")

        updates = [
            gr.update(value=t(selected_language, "title")),
            # gr.update(label=t(selected_language, "dropdown_label")), # <-- ELIMINADA ESTA LÍNEA
            gr.update(
                choices=translated_choices,
                value=default_model,
                label=t(selected_language, "dropdown_detection_model_label")
            ),
            gr.update(label=t(selected_language, "threshold_label")),
            gr.update(label=t(selected_language, "input_label")),
            gr.update(value=t(selected_language, "button")),
            gr.update(label=t(selected_language, "output_label")),
            gr.update(label=t(selected_language, "info_label")),
            gr.update(label=t(selected_language, "error_label"), value="", visible=False),
            gr.update(label=t(selected_language, "debug_label")),
            gr.update(value=t(selected_language, "debug_button"))
        ]

        debug_info["step"] = "Interface update completed successfully"
        debug_info["last_error"] = ""

        return updates

    except Exception as e:
        error_msg = f"ERROR in interface update at step '{debug_info['step']}':\n{str(e)}\n\nTraceback:\n{traceback.format_exc()}"
        debug_info["last_error"] = error_msg
        debug_info["step"] = f"FAILED: {str(e)}"

        # Safe fallback
        safe_updates = [gr.update() for _ in range(10)]
        return safe_updates


def get_debug_status():
    """Get current debug status for display"""
    global debug_info

    status = f"""🔍 DEBUG STATUS:
Current Language: {debug_info.get('language', 'N/A')}
Last Timestamp: {debug_info.get('timestamp', 'N/A')}
Current Step: {debug_info.get('step', 'N/A')}
Last Error: {debug_info.get('last_error', 'None')}

Available Models: {list(available_models.keys())}
Current Model: {current_model_name or 'None loaded'}
Translation Cache Size: {len(translation_cache)}
"""
    return status


def safe_detect_objects(image, language_selector, translated_model_selector, threshold):
    """Safe wrapper for object detection with error handling"""
    global debug_info

    if image is None:
        debug_info["step"] = "No image provided"
        return None, "Please upload an image first.", ""

    try:
        result_image, info, error = detect_objects(image, language_selector, translated_model_selector, threshold)

        # Update error panel visibility based on whether there's an error
        error_visible = bool(error.strip())

        return (
            result_image,
            info,
            gr.update(value=error, visible=error_visible)
        )

    except Exception as e:
        error_message = f"Unexpected error in detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
        debug_info["last_error"] = error_message
        debug_info["step"] = f"UNEXPECTED ERROR: {str(e)}"
        print(error_message)
        return (
            image,
            "Detection failed due to unexpected error. See error panel below.",
            gr.update(value=error_message, visible=True)
        )


def build_app():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        with gr.Row():
            title = gr.Markdown(t("English", "title"))

        with gr.Row():
            with gr.Column(scale=1):
                language_selector = gr.Dropdown(
                    choices=["English", "Spanish", "French"],
                    value="English",
                    label=t("English", "dropdown_label")
                )
            with gr.Column(scale=1):
                model_selector = gr.Dropdown(
                    choices=get_translated_model_choices("English"),
                    value=t("English", "model_fast"),
                    label=t("English", "dropdown_detection_model_label")
                )
            with gr.Column(scale=1):
                threshold_slider = gr.Slider(
                    minimum=0.1,
                    maximum=0.95,
                    value=0.5,
                    step=0.05,
                    label=t("English", "threshold_label")
                )

        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(type="pil", label=t("English", "input_label"))
                button = gr.Button(t("English", "button"), variant="primary")
            with gr.Column(scale=1):
                output_image = gr.Image(label=t("English", "output_label"))
                detection_info = gr.Textbox(
                    label=t("English", "info_label"),
                    lines=10,
                    max_lines=15
                )

        # Error panel - only visible when there are errors
        with gr.Row():
            error_panel = gr.Textbox(
                label=t("English", "error_label"),
                lines=8,
                max_lines=20,
                visible=False,
                elem_classes=["error-panel"]
            )

        # Debug panel - always visible for debugging in HF
        with gr.Row():
            debug_panel = gr.Textbox(
                label=t("English", "debug_label"),
                lines=10,
                max_lines=20,
                value="Application started - ready for debugging",
                visible=True
            )

        with gr.Row():
            debug_button = gr.Button(t("English", "debug_button"), size="sm")

        # Connect language change event
        language_selector.change(
            fn=update_interface,
            inputs=language_selector,
            outputs=[
                title,
                # language_selector, # <-- esta línea también debes eliminarla
                model_selector,
                threshold_slider,
                input_image,
                button,
                output_image,
                detection_info,
                error_panel,
                debug_panel,
                debug_button
            ],
            queue=True
        )

        # Connect detection button click event
        button.click(
            fn=safe_detect_objects,
            inputs=[input_image, language_selector, model_selector, threshold_slider],
            outputs=[output_image, detection_info, error_panel]
        )

        # Connect debug button click event
        debug_button.click(
            fn=get_debug_status,
            outputs=debug_panel
        )

    return app


# Initialize with default model and debug info
debug_info["step"] = "Initializing default model"
debug_info["timestamp"] = str(datetime.datetime.now())
load_model("DETR ResNet-50")
debug_info["step"] = "Application ready"

# Launch the application
if __name__ == "__main__":
    app = build_app()
    app.launch()