Spaces:
Running
Running
File size: 19,115 Bytes
221337b 6ecfb14 53e14a8 221337b 4a473ee a7e9383 cdb3339 a7e9383 6ecfb14 4a473ee 2e9147d cdb3339 4a473ee 2e9147d 0b1e00c 2e9147d 4a473ee cdb3339 4a473ee 2e9147d 4a473ee 2e9147d cdb3339 2e9147d 4a473ee cdb3339 4a473ee 2e9147d 221337b 0b1e00c 4a473ee cdb3339 4a473ee 2e9147d a7e9383 cdb3339 2e9147d a7e9383 cdb3339 2e9147d a7e9383 cdb3339 2e9147d 0b1e00c 2e9147d 0b1e00c 2e9147d 4a473ee cdb3339 2e9147d 4a473ee 2e9147d cdb3339 2e9147d 4a473ee cdb3339 2e9147d 0b1e00c 2e9147d 4a473ee 2e9147d 4a473ee 2e9147d 4a473ee 2e9147d 4a473ee 2e9147d 0b1e00c 4a473ee cdb3339 2e9147d 6ecfb14 0b1e00c 2e9147d 4a473ee 2e9147d 4a473ee 0b1e00c 82026bf 4a473ee 82026bf 4a473ee 2e9147d 0b1e00c 4a473ee cdb3339 a7e9383 cdb3339 a7e9383 cdb3339 a7e9383 cdb3339 a7e9383 cdb3339 a7e9383 cdb3339 a7e9383 cdb3339 a7e9383 4a473ee cdb3339 0b1e00c a7e9383 cdb3339 a7e9383 4a473ee cdb3339 57d38ac cdb3339 57d38ac cdb3339 4a473ee 2e9147d 4a473ee 0b1e00c 2e9147d cdb3339 2e9147d cdb3339 2e9147d 0b1e00c 2e9147d 0b1e00c a7e9383 cdb3339 a7e9383 cdb3339 4a473ee 2e9147d 4a473ee 57d38ac e58f8da 2e9147d 0b1e00c 4a473ee 2e9147d a7e9383 2e9147d a7e9383 2e9147d 0b1e00c cdb3339 2e9147d 221337b 0b1e00c cdb3339 2e9147d cdb3339 6ecfb14 4a473ee 221337b 2e9147d e67d9d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import DetrImageProcessor, DetrForObjectDetection
from pathlib import Path
import transformers
import warnings
import traceback
import datetime
warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter.*")
# Global variables to cache models
current_model = None
current_processor = None
current_model_name = None
# Global debug state
debug_info = {"last_error": "", "step": "", "language": "", "timestamp": ""}
# Available models with better selection
available_models = {
"DETR ResNet-50": "facebook/detr-resnet-50",
"DETR ResNet-101": "facebook/detr-resnet-101",
"DETR DC5": "facebook/detr-resnet-50-dc5",
"DETR ResNet-50 Face Only": "esraakh/detr_fine_tune_face_detection_final"
}
def load_model(model_key):
"""Load model and processor based on selected model key"""
global current_model, current_processor, current_model_name, debug_info
model_name = available_models[model_key]
# Only load if it's a different model
if current_model_name != model_name:
debug_info["step"] = f"Loading model: {model_name}"
print(f"Loading model: {model_name}")
current_processor = DetrImageProcessor.from_pretrained(model_name)
current_model = DetrForObjectDetection.from_pretrained(model_name)
current_model_name = model_name
print(f"Model loaded: {model_name}")
print(f"Available labels: {list(current_model.config.id2label.values())}")
debug_info["step"] = f"Model loaded successfully: {model_name}"
return current_model, current_processor
# Load font
font_path = Path("assets/fonts/arial.ttf")
if not font_path.exists():
print(f"Font file {font_path} not found. Using default font.")
font = ImageFont.load_default()
else:
font = ImageFont.truetype(str(font_path), size=100)
# Set up translations for the app
translations = {
"English": {
"title": "## Enhanced Object Detection App\nUpload an image to detect objects using various DETR models.",
"input_label": "Input Image",
"output_label": "Detected Objects",
"dropdown_label": "Label Language",
"dropdown_detection_model_label": "Detection Model",
"threshold_label": "Detection Threshold",
"button": "Detect Objects",
"info_label": "Detection Info",
"error_label": "Error Messages",
"debug_label": "Debug Status",
"debug_button": "Show Debug Status",
"model_fast": "General Objects (fast)",
"model_precision": "General Objects (high precision)",
"model_small": "Small Objects/Details (slow)",
"model_faces": "Face Detection (people only)"
},
"Spanish": {
"title": "## Aplicación Mejorada de Detección de Objetos\nSube una imagen para detectar objetos usando varios modelos DETR.",
"input_label": "Imagen de entrada",
"output_label": "Objetos detectados",
"dropdown_label": "Idioma de las etiquetas",
"dropdown_detection_model_label": "Modelo de detección",
"threshold_label": "Umbral de detección",
"button": "Detectar objetos",
"info_label": "Información de detección",
"error_label": "Mensajes de error",
"debug_label": "Estado de depuración",
"debug_button": "Mostrar estado de depuración",
"model_fast": "Objetos generales (rápido)",
"model_precision": "Objetos generales (precisión alta)",
"model_small": "Objetos pequeños/detalles (lento)",
"model_faces": "Detección de caras (solo personas)"
},
"French": {
"title": "## Application Améliorée de Détection d'Objets\nTéléchargez une image pour détecter des objets avec divers modèles DETR.",
"input_label": "Image d'entrée",
"output_label": "Objets détectés",
"dropdown_label": "Langue des étiquettes",
"dropdown_detection_model_label": "Modèle de détection",
"threshold_label": "Seuil de détection",
"button": "Détecter les objets",
"info_label": "Information de détection",
"error_label": "Messages d'erreur",
"debug_label": "État de débogage",
"debug_button": "Afficher l'état de débogage",
"model_fast": "Objets généraux (rapide)",
"model_precision": "Objets généraux (haute précision)",
"model_small": "Petits objets/détails (lent)",
"model_faces": "Détection de visages (personnes uniquement)"
}
}
def t(language, key):
return translations.get(language, translations["English"]).get(key, key)
def get_translated_model_choices(language):
"""Get model choices translated to the selected language"""
global debug_info
debug_info["step"] = f"Translating model choices for {language}"
model_mapping = {
"DETR ResNet-50": "model_fast",
"DETR ResNet-101": "model_precision",
"DETR DC5": "model_small",
"DETR ResNet-50 Face Only": "model_faces"
}
translated_choices = []
for model_key in available_models.keys():
if model_key in model_mapping:
translation_key = model_mapping[model_key]
translated_name = t(language, translation_key)
else:
translated_name = model_key
translated_choices.append(translated_name)
debug_info["step"] = f"Model choices translated: {translated_choices}"
return translated_choices
def get_model_key_from_translation(translated_name, language):
"""Get the original model key from translated name"""
model_mapping = {
"DETR ResNet-50": "model_fast",
"DETR ResNet-101": "model_precision",
"DETR DC5": "model_small",
"DETR ResNet-50 Face Only": "model_faces"
}
# Reverse lookup
for model_key, translation_key in model_mapping.items():
if t(language, translation_key) == translated_name:
return model_key
# If not found, try direct match
if translated_name in available_models:
return translated_name
# Default fallback
return "DETR ResNet-50"
def get_helsinki_model(language_label):
"""Returns the Helsinki-NLP model name for translating from English to the selected language."""
lang_map = {
"Spanish": "es",
"French": "fr",
"English": "en"
}
target = lang_map.get(language_label)
if not target or target == "en":
return None
return f"Helsinki-NLP/opus-mt-en-{target}"
# Translation cache
translation_cache = {}
def translate_label(language_label, label):
"""Translates the given label to the target language."""
# Check cache first
cache_key = f"{language_label}_{label}"
if cache_key in translation_cache:
return translation_cache[cache_key]
model_name = get_helsinki_model(language_label)
if not model_name:
return label
try:
translator = transformers.pipeline("translation", model=model_name)
result = translator(label, max_length=40)
translated = result[0]['translation_text']
# Cache the result
translation_cache[cache_key] = translated
return translated
except Exception as e:
print(f"Translation error (429 or other): {e}")
return label # Return original if translation fails
def detect_objects(image, language_selector, translated_model_selector, threshold):
"""Enhanced object detection with adjustable threshold and better info"""
global debug_info
try:
debug_info["step"] = "Starting object detection"
debug_info["timestamp"] = str(datetime.datetime.now())
# Get the actual model key from the translated name
model_selector = get_model_key_from_translation(translated_model_selector, language_selector)
debug_info["step"] = f"Model key resolved: {model_selector}"
print(f"Processing image. Language: {language_selector}, Model: {model_selector}, Threshold: {threshold}")
# Load the selected model
debug_info["step"] = "Loading model"
model, processor = load_model(model_selector)
# Process the image
debug_info["step"] = "Processing image with model"
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# Convert model output to usable detection results with custom threshold
debug_info["step"] = "Post-processing results"
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(
outputs, threshold=threshold, target_sizes=target_sizes
)[0]
# Create a copy of the image for drawing
debug_info["step"] = "Drawing bounding boxes"
image_with_boxes = image.copy()
draw = ImageDraw.Draw(image_with_boxes)
# Detection info
detection_info = f"Detected {len(results['scores'])} objects with threshold {threshold}\n"
detection_info += f"Model: {translated_model_selector} ({model_selector})\n\n"
# Colors for different confidence levels
colors = {
'high': 'red', # > 0.8
'medium': 'orange', # 0.5-0.8
'low': 'yellow' # < 0.5
}
detected_objects = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
confidence = score.item()
box = [round(x, 2) for x in box.tolist()]
# Choose color based on confidence
if confidence > 0.8:
color = colors['high']
elif confidence > 0.5:
color = colors['medium']
else:
color = colors['low']
# Draw bounding box
draw.rectangle(box, outline=color, width=3)
# Prepare label text
label_text = model.config.id2label[label.item()]
translated_label = translate_label(language_selector, label_text)
display_text = f"{translated_label}: {round(confidence, 3)}"
# Store detection info
detected_objects.append({
'label': label_text,
'translated': translated_label,
'confidence': confidence,
'box': box
})
# Calculate text position and size
try:
text_bbox = draw.textbbox((0, 0), display_text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
except:
# Fallback for older PIL versions
text_width, text_height = draw.textsize(display_text, font=font)
# Draw text background
text_bg = [
box[0], box[1] - text_height - 4,
box[0] + text_width + 4, box[1]
]
draw.rectangle(text_bg, fill="black")
draw.text((box[0] + 2, box[1] - text_height - 2), display_text, fill="white", font=font)
# Create detailed detection info
if detected_objects:
detection_info += "Objects found:\n"
for obj in sorted(detected_objects, key=lambda x: x['confidence'], reverse=True):
detection_info += f"- {obj['translated']} ({obj['label']}): {obj['confidence']:.3f}\n"
else:
detection_info += "No objects detected. Try lowering the threshold."
debug_info["step"] = "Detection completed successfully"
debug_info["last_error"] = ""
return image_with_boxes, detection_info, ""
except Exception as e:
error_message = f"Error in object detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
debug_info["last_error"] = error_message
debug_info["step"] = f"ERROR in detection: {str(e)}"
print(error_message)
return image if image else None, "Detection failed. See error panel below.", error_message
def update_interface(selected_language):
global debug_info
debug_info["language"] = selected_language
debug_info["timestamp"] = str(datetime.datetime.now())
debug_info["step"] = "Starting language interface update"
try:
translated_choices = get_translated_model_choices(selected_language)
default_model = t(selected_language, "model_fast")
updates = [
gr.update(value=t(selected_language, "title")),
# gr.update(label=t(selected_language, "dropdown_label")), # <-- ELIMINADA ESTA LÍNEA
gr.update(
choices=translated_choices,
value=default_model,
label=t(selected_language, "dropdown_detection_model_label")
),
gr.update(label=t(selected_language, "threshold_label")),
gr.update(label=t(selected_language, "input_label")),
gr.update(value=t(selected_language, "button")),
gr.update(label=t(selected_language, "output_label")),
gr.update(label=t(selected_language, "info_label")),
gr.update(label=t(selected_language, "error_label"), value="", visible=False),
gr.update(label=t(selected_language, "debug_label")),
gr.update(value=t(selected_language, "debug_button"))
]
debug_info["step"] = "Interface update completed successfully"
debug_info["last_error"] = ""
return updates
except Exception as e:
error_msg = f"ERROR in interface update at step '{debug_info['step']}':\n{str(e)}\n\nTraceback:\n{traceback.format_exc()}"
debug_info["last_error"] = error_msg
debug_info["step"] = f"FAILED: {str(e)}"
# Safe fallback
safe_updates = [gr.update() for _ in range(10)]
return safe_updates
def get_debug_status():
"""Get current debug status for display"""
global debug_info
status = f"""🔍 DEBUG STATUS:
Current Language: {debug_info.get('language', 'N/A')}
Last Timestamp: {debug_info.get('timestamp', 'N/A')}
Current Step: {debug_info.get('step', 'N/A')}
Last Error: {debug_info.get('last_error', 'None')}
Available Models: {list(available_models.keys())}
Current Model: {current_model_name or 'None loaded'}
Translation Cache Size: {len(translation_cache)}
"""
return status
def safe_detect_objects(image, language_selector, translated_model_selector, threshold):
"""Safe wrapper for object detection with error handling"""
global debug_info
if image is None:
debug_info["step"] = "No image provided"
return None, "Please upload an image first.", ""
try:
result_image, info, error = detect_objects(image, language_selector, translated_model_selector, threshold)
# Update error panel visibility based on whether there's an error
error_visible = bool(error.strip())
return (
result_image,
info,
gr.update(value=error, visible=error_visible)
)
except Exception as e:
error_message = f"Unexpected error in detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
debug_info["last_error"] = error_message
debug_info["step"] = f"UNEXPECTED ERROR: {str(e)}"
print(error_message)
return (
image,
"Detection failed due to unexpected error. See error panel below.",
gr.update(value=error_message, visible=True)
)
def build_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Row():
title = gr.Markdown(t("English", "title"))
with gr.Row():
with gr.Column(scale=1):
language_selector = gr.Dropdown(
choices=["English", "Spanish", "French"],
value="English",
label=t("English", "dropdown_label")
)
with gr.Column(scale=1):
model_selector = gr.Dropdown(
choices=get_translated_model_choices("English"),
value=t("English", "model_fast"),
label=t("English", "dropdown_detection_model_label")
)
with gr.Column(scale=1):
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.95,
value=0.5,
step=0.05,
label=t("English", "threshold_label")
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label=t("English", "input_label"))
button = gr.Button(t("English", "button"), variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label=t("English", "output_label"))
detection_info = gr.Textbox(
label=t("English", "info_label"),
lines=10,
max_lines=15
)
# Error panel - only visible when there are errors
with gr.Row():
error_panel = gr.Textbox(
label=t("English", "error_label"),
lines=8,
max_lines=20,
visible=False,
elem_classes=["error-panel"]
)
# Debug panel - always visible for debugging in HF
with gr.Row():
debug_panel = gr.Textbox(
label=t("English", "debug_label"),
lines=10,
max_lines=20,
value="Application started - ready for debugging",
visible=True
)
with gr.Row():
debug_button = gr.Button(t("English", "debug_button"), size="sm")
# Connect language change event
language_selector.change(
fn=update_interface,
inputs=language_selector,
outputs=[
title,
# language_selector, # <-- esta línea también debes eliminarla
model_selector,
threshold_slider,
input_image,
button,
output_image,
detection_info,
error_panel,
debug_panel,
debug_button
],
queue=True
)
# Connect detection button click event
button.click(
fn=safe_detect_objects,
inputs=[input_image, language_selector, model_selector, threshold_slider],
outputs=[output_image, detection_info, error_panel]
)
# Connect debug button click event
debug_button.click(
fn=get_debug_status,
outputs=debug_panel
)
return app
# Initialize with default model and debug info
debug_info["step"] = "Initializing default model"
debug_info["timestamp"] = str(datetime.datetime.now())
load_model("DETR ResNet-50")
debug_info["step"] = "Application ready"
# Launch the application
if __name__ == "__main__":
app = build_app()
app.launch() |