Spaces:
Running
Running
Víctor Sáez
commited on
Commit
·
4a473ee
1
Parent(s):
0b1e00c
Restirung Adding multilenguage support
Browse files
app.py
CHANGED
@@ -2,19 +2,17 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from PIL import Image, ImageDraw, ImageFont
|
4 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
ENABLE_TRANSLATION = False # Cambia a True solo si puedes cargar modelos Helsinki localmente
|
8 |
-
|
9 |
-
if ENABLE_TRANSLATION:
|
10 |
-
from transformers import pipeline
|
11 |
-
|
12 |
-
# Global variables
|
13 |
current_model = None
|
14 |
current_processor = None
|
15 |
current_model_name = None
|
16 |
|
|
|
17 |
available_models = {
|
|
|
18 |
"DETR ResNet-50": "facebook/detr-resnet-50",
|
19 |
"DETR ResNet-101": "facebook/detr-resnet-101",
|
20 |
"DETR DC5": "facebook/detr-resnet-50-dc5",
|
@@ -23,23 +21,37 @@ available_models = {
|
|
23 |
|
24 |
|
25 |
def load_model(model_key):
|
|
|
26 |
global current_model, current_processor, current_model_name
|
|
|
27 |
model_name = available_models[model_key]
|
|
|
|
|
28 |
if current_model_name != model_name:
|
29 |
print(f"Loading model: {model_name}")
|
30 |
current_processor = DetrImageProcessor.from_pretrained(model_name)
|
31 |
current_model = DetrForObjectDetection.from_pretrained(model_name)
|
32 |
current_model_name = model_name
|
|
|
|
|
|
|
33 |
return current_model, current_processor
|
34 |
|
35 |
|
36 |
-
def get_font(size=12):
|
37 |
-
try:
|
38 |
-
return ImageFont.truetype("arial.ttf", size=size)
|
39 |
-
except:
|
40 |
-
return ImageFont.load_default()
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
translations = {
|
44 |
"English": {
|
45 |
"title": "## Enhanced Object Detection App\nUpload an image to detect objects using various DETR models.",
|
@@ -91,131 +103,186 @@ def t(language, key):
|
|
91 |
|
92 |
|
93 |
def get_translated_model_choices(language):
|
|
|
94 |
model_mapping = {
|
95 |
"DETR ResNet-50": "model_fast",
|
96 |
"DETR ResNet-101": "model_precision",
|
97 |
"DETR DC5": "model_small",
|
98 |
"DETR ResNet-50 Face Only": "model_faces"
|
99 |
}
|
|
|
100 |
translated_choices = []
|
101 |
for model_key in available_models.keys():
|
102 |
if model_key in model_mapping:
|
103 |
translation_key = model_mapping[model_key]
|
104 |
translated_name = t(language, translation_key)
|
105 |
else:
|
106 |
-
translated_name = model_key
|
107 |
translated_choices.append(translated_name)
|
|
|
108 |
return translated_choices
|
109 |
|
110 |
|
111 |
def get_model_key_from_translation(translated_name, language):
|
|
|
112 |
model_mapping = {
|
113 |
"DETR ResNet-50": "model_fast",
|
114 |
"DETR ResNet-101": "model_precision",
|
115 |
"DETR DC5": "model_small",
|
116 |
"DETR ResNet-50 Face Only": "model_faces"
|
117 |
}
|
|
|
|
|
118 |
for model_key, translation_key in model_mapping.items():
|
119 |
if t(language, translation_key) == translated_name:
|
120 |
return model_key
|
|
|
|
|
121 |
if translated_name in available_models:
|
122 |
return translated_name
|
|
|
|
|
123 |
return "DETR ResNet-50"
|
124 |
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
translation_cache = {}
|
128 |
|
129 |
|
|
|
130 |
def translate_label(language_label, label):
|
131 |
-
|
132 |
-
|
133 |
cache_key = f"{language_label}_{label}"
|
134 |
if cache_key in translation_cache:
|
135 |
return translation_cache[cache_key]
|
136 |
-
# Dummy fallback in Spaces, or if not preloaded, just warn
|
137 |
-
translation_cache[cache_key] = f"{label} (no translation)"
|
138 |
-
return translation_cache[cache_key]
|
139 |
|
|
|
|
|
|
|
140 |
|
141 |
-
def detect_objects(image, language_selector, translated_model_selector, threshold):
|
142 |
try:
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
target_sizes = torch.tensor([image.size[::-1]])
|
150 |
-
results = processor.post_process_object_detection(
|
151 |
-
outputs, threshold=threshold, target_sizes=target_sizes
|
152 |
-
)[0]
|
153 |
-
image_with_boxes = image.copy()
|
154 |
-
draw = ImageDraw.Draw(image_with_boxes)
|
155 |
-
detection_info = f"Detected {len(results['scores'])} objects with threshold {threshold}\n"
|
156 |
-
detection_info += f"Model: {translated_model_selector} ({model_selector})\n\n"
|
157 |
-
colors = {
|
158 |
-
'high': 'red',
|
159 |
-
'medium': 'orange',
|
160 |
-
'low': 'yellow'
|
161 |
-
}
|
162 |
-
detected_objects = []
|
163 |
-
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
164 |
-
confidence = score.item()
|
165 |
-
box = [round(x, 2) for x in box.tolist()]
|
166 |
-
if confidence > 0.8:
|
167 |
-
color = colors['high']
|
168 |
-
elif confidence > 0.5:
|
169 |
-
color = colors['medium']
|
170 |
-
else:
|
171 |
-
color = colors['low']
|
172 |
-
draw.rectangle(box, outline=color, width=3)
|
173 |
-
label_text = model.config.id2label[label.item()]
|
174 |
-
translated_label = translate_label(language_selector, label_text)
|
175 |
-
display_text = f"{translated_label}: {round(confidence, 3)}"
|
176 |
-
detected_objects.append({
|
177 |
-
'label': label_text,
|
178 |
-
'translated': translated_label,
|
179 |
-
'confidence': confidence,
|
180 |
-
'box': box
|
181 |
-
})
|
182 |
-
try:
|
183 |
-
image_width = image.size[0]
|
184 |
-
font_size = max(image_width // 40, 12)
|
185 |
-
font = get_font(font_size)
|
186 |
-
text_bbox = draw.textbbox((0, 0), display_text, font=font)
|
187 |
-
text_width = text_bbox[2] - text_bbox[0]
|
188 |
-
text_height = text_bbox[3] - text_bbox[1]
|
189 |
-
except:
|
190 |
-
font = get_font(12)
|
191 |
-
text_width = 50
|
192 |
-
text_height = 20
|
193 |
-
text_bg = [
|
194 |
-
box[0], box[1] - text_height - 4,
|
195 |
-
box[0] + text_width + 4, box[1]
|
196 |
-
]
|
197 |
-
draw.rectangle(text_bg, fill="black")
|
198 |
-
draw.text((box[0] + 2, box[1] - text_height - 2), display_text, fill="white", font=font)
|
199 |
-
if detected_objects:
|
200 |
-
detection_info += "Objects found:\n"
|
201 |
-
for obj in sorted(detected_objects, key=lambda x: x['confidence'], reverse=True):
|
202 |
-
detection_info += f"- {obj['translated']} ({obj['label']}): {obj['confidence']:.3f}\n"
|
203 |
-
else:
|
204 |
-
detection_info += "No objects detected. Try lowering the threshold."
|
205 |
-
return image_with_boxes, detection_info
|
206 |
except Exception as e:
|
207 |
-
|
208 |
-
|
209 |
-
traceback.print_exc()
|
210 |
-
return None, f"Error detecting objects: {e}"
|
211 |
|
212 |
|
213 |
-
def
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
218 |
-
|
|
|
219 |
|
220 |
with gr.Row():
|
221 |
with gr.Column(scale=1):
|
@@ -227,14 +294,14 @@ def build_app():
|
|
227 |
with gr.Column(scale=1):
|
228 |
model_selector = gr.Dropdown(
|
229 |
choices=get_translated_model_choices("English"),
|
230 |
-
value=t("English", "model_fast"),
|
231 |
label=t("English", "dropdown_detection_model_label")
|
232 |
)
|
233 |
with gr.Column(scale=1):
|
234 |
threshold_slider = gr.Slider(
|
235 |
minimum=0.1,
|
236 |
maximum=0.95,
|
237 |
-
value=0.5,
|
238 |
step=0.05,
|
239 |
label=t("English", "threshold_label")
|
240 |
)
|
@@ -251,56 +318,36 @@ def build_app():
|
|
251 |
max_lines=15
|
252 |
)
|
253 |
|
|
|
254 |
def update_interface(selected_language):
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
updates = []
|
264 |
-
updates.append(gr.update(value=t(selected_language, "title"))) # title
|
265 |
-
updates.append(gr.update(label=t(selected_language, "dropdown_label"))) # language_selector
|
266 |
-
updates.append(gr.update(
|
267 |
choices=translated_choices,
|
268 |
value=default_model,
|
269 |
label=t(selected_language, "dropdown_detection_model_label")
|
270 |
-
)
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
print(f"Error in update_interface: {e}")
|
280 |
-
import traceback
|
281 |
-
traceback.print_exc()
|
282 |
-
# Retornar valores por defecto en caso de error
|
283 |
-
return [
|
284 |
-
gr.update(), # title
|
285 |
-
gr.update(), # language_selector
|
286 |
-
gr.update(), # model_selector
|
287 |
-
gr.update(), # threshold_slider
|
288 |
-
gr.update(), # input_image
|
289 |
-
gr.update(), # button
|
290 |
-
gr.update(), # output_image
|
291 |
-
gr.update() # detection_info
|
292 |
-
]
|
293 |
-
|
294 |
-
# Configurar el evento de cambio de idioma
|
295 |
language_selector.change(
|
296 |
fn=update_interface,
|
297 |
-
inputs=
|
298 |
outputs=[title, language_selector, model_selector, threshold_slider,
|
299 |
input_image, button, output_image, detection_info],
|
300 |
queue=False
|
301 |
)
|
302 |
|
303 |
-
#
|
304 |
button.click(
|
305 |
fn=detect_objects,
|
306 |
inputs=[input_image, language_selector, model_selector, threshold_slider],
|
@@ -310,9 +357,18 @@ def build_app():
|
|
310 |
return app
|
311 |
|
312 |
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
load_model("DETR ResNet-50")
|
315 |
|
|
|
316 |
if __name__ == "__main__":
|
317 |
app = build_app()
|
318 |
app.launch()
|
|
|
2 |
import torch
|
3 |
from PIL import Image, ImageDraw, ImageFont
|
4 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
5 |
+
from pathlib import Path
|
6 |
+
import transformers
|
7 |
|
8 |
+
# Global variables to cache models
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
current_model = None
|
10 |
current_processor = None
|
11 |
current_model_name = None
|
12 |
|
13 |
+
# Available models with better selection
|
14 |
available_models = {
|
15 |
+
# DETR Models
|
16 |
"DETR ResNet-50": "facebook/detr-resnet-50",
|
17 |
"DETR ResNet-101": "facebook/detr-resnet-101",
|
18 |
"DETR DC5": "facebook/detr-resnet-50-dc5",
|
|
|
21 |
|
22 |
|
23 |
def load_model(model_key):
|
24 |
+
"""Load model and processor based on selected model key"""
|
25 |
global current_model, current_processor, current_model_name
|
26 |
+
|
27 |
model_name = available_models[model_key]
|
28 |
+
|
29 |
+
# Only load if it's a different model
|
30 |
if current_model_name != model_name:
|
31 |
print(f"Loading model: {model_name}")
|
32 |
current_processor = DetrImageProcessor.from_pretrained(model_name)
|
33 |
current_model = DetrForObjectDetection.from_pretrained(model_name)
|
34 |
current_model_name = model_name
|
35 |
+
print(f"Model loaded: {model_name}")
|
36 |
+
print(f"Available labels: {list(current_model.config.id2label.values())}")
|
37 |
+
|
38 |
return current_model, current_processor
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
+
|
44 |
+
|
45 |
+
# Load font
|
46 |
+
font_path = Path("assets/fonts/arial.ttf")
|
47 |
+
if not font_path.exists():
|
48 |
+
|
49 |
+
print(f"Font file {font_path} not found. Using default font.")
|
50 |
+
font = ImageFont.load_default()
|
51 |
+
else:
|
52 |
+
font = ImageFont.truetype(str(font_path), size=100) # Reduced font size
|
53 |
+
|
54 |
+
# Set up translations for the app
|
55 |
translations = {
|
56 |
"English": {
|
57 |
"title": "## Enhanced Object Detection App\nUpload an image to detect objects using various DETR models.",
|
|
|
103 |
|
104 |
|
105 |
def get_translated_model_choices(language):
|
106 |
+
"""Get model choices translated to the selected language"""
|
107 |
model_mapping = {
|
108 |
"DETR ResNet-50": "model_fast",
|
109 |
"DETR ResNet-101": "model_precision",
|
110 |
"DETR DC5": "model_small",
|
111 |
"DETR ResNet-50 Face Only": "model_faces"
|
112 |
}
|
113 |
+
|
114 |
translated_choices = []
|
115 |
for model_key in available_models.keys():
|
116 |
if model_key in model_mapping:
|
117 |
translation_key = model_mapping[model_key]
|
118 |
translated_name = t(language, translation_key)
|
119 |
else:
|
120 |
+
translated_name = model_key # Fallback to original name
|
121 |
translated_choices.append(translated_name)
|
122 |
+
|
123 |
return translated_choices
|
124 |
|
125 |
|
126 |
def get_model_key_from_translation(translated_name, language):
|
127 |
+
"""Get the original model key from translated name"""
|
128 |
model_mapping = {
|
129 |
"DETR ResNet-50": "model_fast",
|
130 |
"DETR ResNet-101": "model_precision",
|
131 |
"DETR DC5": "model_small",
|
132 |
"DETR ResNet-50 Face Only": "model_faces"
|
133 |
}
|
134 |
+
|
135 |
+
# Reverse lookup
|
136 |
for model_key, translation_key in model_mapping.items():
|
137 |
if t(language, translation_key) == translated_name:
|
138 |
return model_key
|
139 |
+
|
140 |
+
# If not found, try direct match
|
141 |
if translated_name in available_models:
|
142 |
return translated_name
|
143 |
+
|
144 |
+
# Default fallback
|
145 |
return "DETR ResNet-50"
|
146 |
|
147 |
|
148 |
+
def get_helsinki_model(language_label):
|
149 |
+
"""Returns the Helsinki-NLP model name for translating from English to the selected language."""
|
150 |
+
lang_map = {
|
151 |
+
"Spanish": "es",
|
152 |
+
"French": "fr",
|
153 |
+
"English": "en"
|
154 |
+
}
|
155 |
+
target = lang_map.get(language_label)
|
156 |
+
if not target or target == "en":
|
157 |
+
return None
|
158 |
+
return f"Helsinki-NLP/opus-mt-en-{target}"
|
159 |
+
|
160 |
+
|
161 |
+
# add cache for translations
|
162 |
translation_cache = {}
|
163 |
|
164 |
|
165 |
+
|
166 |
def translate_label(language_label, label):
|
167 |
+
"""Translates the given label to the target language."""
|
168 |
+
# Check cache first
|
169 |
cache_key = f"{language_label}_{label}"
|
170 |
if cache_key in translation_cache:
|
171 |
return translation_cache[cache_key]
|
|
|
|
|
|
|
172 |
|
173 |
+
model_name = get_helsinki_model(language_label)
|
174 |
+
if not model_name:
|
175 |
+
return label
|
176 |
|
|
|
177 |
try:
|
178 |
+
translator = transformers.pipeline("translation", model=model_name)
|
179 |
+
result = translator(label, max_length=40)
|
180 |
+
translated = result[0]['translation_text']
|
181 |
+
# Cache the result
|
182 |
+
translation_cache[cache_key] = translated
|
183 |
+
return translated
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
except Exception as e:
|
185 |
+
print(f"Translation error (429 or other): {e}")
|
186 |
+
return label # Return original if translation fails
|
|
|
|
|
187 |
|
188 |
|
189 |
+
def detect_objects(image, language_selector, translated_model_selector, threshold):
|
190 |
+
"""Enhanced object detection with adjustable threshold and better info"""
|
191 |
+
# Get the actual model key from the translated name
|
192 |
+
model_selector = get_model_key_from_translation(translated_model_selector, language_selector)
|
193 |
+
|
194 |
+
print(f"Processing image. Language: {language_selector}, Model: {model_selector}, Threshold: {threshold}")
|
195 |
+
|
196 |
+
# Load the selected model
|
197 |
+
model, processor = load_model(model_selector)
|
198 |
+
|
199 |
+
# Process the image
|
200 |
+
inputs = processor(images=image, return_tensors="pt")
|
201 |
+
outputs = model(**inputs)
|
202 |
+
|
203 |
+
# Convert model output to usable detection results with custom threshold
|
204 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
205 |
+
results = processor.post_process_object_detection(
|
206 |
+
outputs, threshold=threshold, target_sizes=target_sizes
|
207 |
+
)[0]
|
208 |
+
|
209 |
+
# Create a copy of the image for drawing
|
210 |
+
image_with_boxes = image.copy()
|
211 |
+
draw = ImageDraw.Draw(image_with_boxes)
|
212 |
+
|
213 |
+
# Detection info
|
214 |
+
detection_info = f"Detected {len(results['scores'])} objects with threshold {threshold}\n"
|
215 |
+
detection_info += f"Model: {translated_model_selector} ({model_selector})\n\n"
|
216 |
+
|
217 |
+
# Colors for different confidence levels
|
218 |
+
colors = {
|
219 |
+
'high': 'red', # > 0.8
|
220 |
+
'medium': 'orange', # 0.5-0.8
|
221 |
+
'low': 'yellow' # < 0.5
|
222 |
+
}
|
223 |
+
|
224 |
+
detected_objects = []
|
225 |
+
|
226 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
227 |
+
confidence = score.item()
|
228 |
+
box = [round(x, 2) for x in box.tolist()]
|
229 |
|
230 |
+
# Choose color based on confidence
|
231 |
+
if confidence > 0.8:
|
232 |
+
color = colors['high']
|
233 |
+
elif confidence > 0.5:
|
234 |
+
color = colors['medium']
|
235 |
+
else:
|
236 |
+
color = colors['low']
|
237 |
+
|
238 |
+
# Draw bounding box
|
239 |
+
draw.rectangle(box, outline=color, width=3)
|
240 |
+
|
241 |
+
# Prepare label text
|
242 |
+
label_text = model.config.id2label[label.item()]
|
243 |
+
translated_label = translate_label(language_selector, label_text)
|
244 |
+
display_text = f"{translated_label}: {round(confidence, 3)}"
|
245 |
+
|
246 |
+
# Store detection info
|
247 |
+
detected_objects.append({
|
248 |
+
'label': label_text,
|
249 |
+
'translated': translated_label,
|
250 |
+
'confidence': confidence,
|
251 |
+
'box': box
|
252 |
+
})
|
253 |
+
|
254 |
+
# Calculate text position and size
|
255 |
+
try:
|
256 |
+
text_bbox = draw.textbbox((0, 0), display_text, font=font)
|
257 |
+
text_width = text_bbox[2] - text_bbox[0]
|
258 |
+
text_height = text_bbox[3] - text_bbox[1]
|
259 |
+
except:
|
260 |
+
# Fallback for older PIL versions
|
261 |
+
text_width, text_height = draw.textsize(display_text, font=font)
|
262 |
+
|
263 |
+
# Draw text background
|
264 |
+
text_bg = [
|
265 |
+
box[0], box[1] - text_height - 4,
|
266 |
+
box[0] + text_width + 4, box[1]
|
267 |
+
]
|
268 |
+
draw.rectangle(text_bg, fill="black")
|
269 |
+
draw.text((box[0] + 2, box[1] - text_height - 2), display_text, fill="white", font=font)
|
270 |
+
|
271 |
+
# Create detailed detection info
|
272 |
+
if detected_objects:
|
273 |
+
detection_info += "Objects found:\n"
|
274 |
+
for obj in sorted(detected_objects, key=lambda x: x['confidence'], reverse=True):
|
275 |
+
detection_info += f"- {obj['translated']} ({obj['label']}): {obj['confidence']:.3f}\n"
|
276 |
+
else:
|
277 |
+
detection_info += "No objects detected. Try lowering the threshold."
|
278 |
+
|
279 |
+
return image_with_boxes, detection_info
|
280 |
+
|
281 |
+
|
282 |
+
def build_app():
|
283 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
284 |
+
with gr.Row():
|
285 |
+
title = gr.Markdown(t("English", "title"))
|
286 |
|
287 |
with gr.Row():
|
288 |
with gr.Column(scale=1):
|
|
|
294 |
with gr.Column(scale=1):
|
295 |
model_selector = gr.Dropdown(
|
296 |
choices=get_translated_model_choices("English"),
|
297 |
+
value=t("English", "model_fast"), # Default to translated "fast" option
|
298 |
label=t("English", "dropdown_detection_model_label")
|
299 |
)
|
300 |
with gr.Column(scale=1):
|
301 |
threshold_slider = gr.Slider(
|
302 |
minimum=0.1,
|
303 |
maximum=0.95,
|
304 |
+
value=0.5, # Lowered default threshold
|
305 |
step=0.05,
|
306 |
label=t("English", "threshold_label")
|
307 |
)
|
|
|
318 |
max_lines=15
|
319 |
)
|
320 |
|
321 |
+
# Function to update interface when language changes
|
322 |
def update_interface(selected_language):
|
323 |
+
translated_choices = get_translated_model_choices(selected_language)
|
324 |
+
default_model = t(selected_language, "model_fast")
|
325 |
+
|
326 |
+
return [
|
327 |
+
gr.update(value=t(selected_language, "title")),
|
328 |
+
gr.update(label=t(selected_language, "dropdown_label")),
|
329 |
+
gr.update(
|
|
|
|
|
|
|
|
|
|
|
330 |
choices=translated_choices,
|
331 |
value=default_model,
|
332 |
label=t(selected_language, "dropdown_detection_model_label")
|
333 |
+
),
|
334 |
+
gr.update(label=t(selected_language, "threshold_label")),
|
335 |
+
gr.update(label=t(selected_language, "input_label")),
|
336 |
+
gr.update(value=t(selected_language, "button")),
|
337 |
+
gr.update(label=t(selected_language, "output_label")),
|
338 |
+
gr.update(label=t(selected_language, "info_label"))
|
339 |
+
]
|
340 |
+
|
341 |
+
# Connect language change event
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
language_selector.change(
|
343 |
fn=update_interface,
|
344 |
+
inputs=language_selector,
|
345 |
outputs=[title, language_selector, model_selector, threshold_slider,
|
346 |
input_image, button, output_image, detection_info],
|
347 |
queue=False
|
348 |
)
|
349 |
|
350 |
+
# Connect detection button click event
|
351 |
button.click(
|
352 |
fn=detect_objects,
|
353 |
inputs=[input_image, language_selector, model_selector, threshold_slider],
|
|
|
357 |
return app
|
358 |
|
359 |
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
# Initialize with default model
|
369 |
load_model("DETR ResNet-50")
|
370 |
|
371 |
+
# Launch the application
|
372 |
if __name__ == "__main__":
|
373 |
app = build_app()
|
374 |
app.launch()
|