|
import streamlit as st |
|
from upload import upload_file_to_vectara |
|
from query import process_queries |
|
import os |
|
|
|
|
|
with open("style.css") as f: |
|
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) |
|
|
|
|
|
st.set_page_config(page_title="STC Bank Assistant", layout="centered") |
|
|
|
st.markdown(""" |
|
# Welcome to the STC Bank Assistant |
|
|
|
🏡 **How may I help you?** |
|
|
|
#### Add additional files here |
|
""") |
|
|
|
customer_id = str(os.environ['VECTARA_CUSTOMER_ID']) |
|
api_key = str(os.environ['VECTARA_API_KEY']) |
|
corpus_id = str(os.environ['VECTARA_CORPUS_ID']) |
|
corpus_key = str(os.environ['VECTARA_CORPUS_KEY']) |
|
uploaded_files = st.file_uploader("Upload PDF, DOCX, or XLSX files", type=["pdf", "docx", "xlsx"], accept_multiple_files=True) |
|
|
|
if uploaded_files and customer_id and api_key and corpus_id: |
|
for file in uploaded_files: |
|
response = upload_file_to_vectara(file, customer_id, api_key, corpus_key) |
|
st.write(f"Uploaded {file.name}: {response}") |
|
|
|
if st.button("Run Queries"): |
|
results = process_queries(customer_id, api_key, corpus_key) |
|
for question, answer in results.items(): |
|
st.subheader(question) |
|
st.write(answer) |
|
|