File size: 1,227 Bytes
4485574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import streamlit as st
from upload import upload_file_to_vectara
from query import process_queries
import os

# Load external CSS
with open("style.css") as f:
    st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

# Streamlit UI
st.set_page_config(page_title="STC Bank Assistant", layout="centered")

st.markdown("""
    # Welcome to the STC Bank Assistant
    
    🏡 **How may I help you?**
    
    #### Add additional files here
""")

customer_id = str(os.environ['VECTARA_CUSTOMER_ID'])
api_key = str(os.environ['VECTARA_API_KEY'])
corpus_id = str(os.environ['VECTARA_CORPUS_ID'])
corpus_key = str(os.environ['VECTARA_CORPUS_KEY'])
uploaded_files = st.file_uploader("Upload PDF, DOCX, or XLSX files", type=["pdf", "docx", "xlsx"], accept_multiple_files=True)

if uploaded_files and customer_id and api_key and corpus_id:
    for file in uploaded_files:
        response = upload_file_to_vectara(file, customer_id, api_key, corpus_key)
        st.write(f"Uploaded {file.name}: {response}")

    if st.button("Run Queries"):
        results = process_queries(customer_id, api_key, corpus_key)
        for question, answer in results.items():
            st.subheader(question)
            st.write(answer)