|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("umar141/Gemma_1B_Baro_v2_vllm") |
|
model = AutoModelForCausalLM.from_pretrained("umar141/Gemma_1B_Baro_v2_vllm") |
|
|
|
|
|
st.set_page_config(page_title="Gemma-based Chatbot", page_icon=":robot:") |
|
|
|
|
|
st.title("Gemma-based Chatbot") |
|
st.write("This is a chatbot powered by a fine-tuned Gemma model.") |
|
|
|
|
|
user_input = st.text_input("Ask me anything:") |
|
|
|
|
|
if user_input: |
|
|
|
inputs = tokenizer.encode(user_input, return_tensors="pt") |
|
outputs = model.generate(inputs, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
st.write("AI Response:") |
|
st.write(response) |
|
|
|
|