Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,30 @@
|
|
1 |
-
|
|
|
2 |
|
3 |
-
# Load tokenizer
|
4 |
tokenizer = AutoTokenizer.from_pretrained("umar141/Gemma_1B_Baro_v2_vllm")
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
"umar141/Gemma_1B_Baro_v2_vllm",
|
9 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
10 |
-
device_map="auto"
|
11 |
-
)
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
+
# Load the model and tokenizer
|
5 |
tokenizer = AutoTokenizer.from_pretrained("umar141/Gemma_1B_Baro_v2_vllm")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("umar141/Gemma_1B_Baro_v2_vllm")
|
7 |
|
8 |
+
# Streamlit page configuration
|
9 |
+
st.set_page_config(page_title="Gemma-based Chatbot", page_icon=":robot:")
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Introduction text
|
12 |
+
st.title("Gemma-based Chatbot")
|
13 |
+
st.write("This is a chatbot powered by a fine-tuned Gemma model.")
|
14 |
|
15 |
+
# User input
|
16 |
+
user_input = st.text_input("Ask me anything:")
|
17 |
+
|
18 |
+
# Generate response when the user inputs a query
|
19 |
+
if user_input:
|
20 |
+
# Tokenize input and generate model response
|
21 |
+
inputs = tokenizer.encode(user_input, return_tensors="pt")
|
22 |
+
outputs = model.generate(inputs, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
|
23 |
+
|
24 |
+
# Decode the response
|
25 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
# Display the response
|
28 |
+
st.write("AI Response:")
|
29 |
+
st.write(response)
|
30 |
|
|