bookscanner_app / app.py
ugolefoo's picture
Update app.py
4721608 verified
raw
history blame
7.64 kB
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
import io
from io import BytesIO
# ──────────────────────────────────────────────────────────────
# 1. Utility: Detect rectangular contours (approximate book covers)
# ──────────────────────────────────────────────────────────────
def detect_book_regions(image: np.ndarray, min_area=10000, eps_coef=0.02):
"""
Detect rectangular regions in an image that likely correspond to book covers.
Returns a list of bounding boxes: (x, y, w, h).
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 50, 150)
# Dilate + erode to close gaps
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
boxes = []
for cnt in contours:
area = cv2.contourArea(cnt)
if area < min_area:
continue
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, eps_coef * peri, True)
# Keep only quadrilaterals
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(approx)
ar = w / float(h)
# Filter by typical book-cover aspect ratios
if 0.4 < ar < 0.9 or 1.0 < ar < 1.6:
boxes.append((x, y, w, h))
# Sort left→right, top→bottom
boxes = sorted(boxes, key=lambda b: (b[1], b[0]))
return boxes
# ──────────────────────────────────────────────────────────────
# 2. OCR on a cropped region
# ──────────────────────────────────────────────────────────────
def ocr_on_region(image: np.ndarray, box: tuple):
"""
Crop the image to the given box and run Tesseract OCR.
Return the raw OCR text.
"""
x, y, w, h = box
cropped = image[y : y + h, x : x + w]
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
_, thresh_crop = cv2.threshold(
gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
custom_config = r"--oem 3 --psm 6"
text = pytesseract.image_to_string(thresh_crop, config=custom_config)
return text.strip()
# ──────────────────────────────────────────────────────────────
# 3. Query OpenLibrary API
# ──────────────────────────────────────────────────────────────
def query_openlibrary(title_text: str, author_text: str = None):
"""
Search OpenLibrary by title (and optional author).
Return a dict with title, author_name, publisher, first_publish_year, or None.
"""
base_url = "https://openlibrary.org/search.json"
params = {"title": title_text}
if author_text:
params["author"] = author_text
try:
resp = requests.get(base_url, params=params, timeout=5)
resp.raise_for_status()
data = resp.json()
if data.get("docs"):
doc = data["docs"][0]
return {
"title": doc.get("title", ""),
"author_name": ", ".join(doc.get("author_name", [])),
"publisher": ", ".join(doc.get("publisher", [])),
"first_publish_year": doc.get("first_publish_year", ""),
}
except Exception as e:
print(f"OpenLibrary query failed: {e}")
return None
# ──────────────────────────────────────────────────────────────
# 4. Process one uploaded image
# ──────────────────────────────────────────────────────────────
def process_image(image_file):
"""
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers β†’ OCR β†’ OpenLibrary.
Return a DataFrame and a (filename, BytesIO) tuple for CSV.
"""
img = np.array(image_file)[:, :, ::-1].copy() # PIL to OpenCV BGR
boxes = detect_book_regions(img)
records = []
for box in boxes:
ocr_text = ocr_on_region(img, box)
lines = [l.strip() for l in ocr_text.splitlines() if l.strip()]
if not lines:
continue
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
records.append(
{
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
}
)
if not records:
df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
# Build an empty CSV bytes buffer
empty_csv = df_empty.to_csv(index=False).encode()
buffer = io.BytesIO(empty_csv)
buffer.name = "books.csv"
return df_empty, buffer
df = pd.DataFrame(records)
csv_bytes = df.to_csv(index=False).encode()
buffer = io.BytesIO(csv_bytes)
buffer.name = "books.csv"
return df, buffer
# ──────────────────────────────────────────────────────────────
# 5. Build the Gradio Interface
# ──────────────────────────────────────────────────────────────
def build_interface():
with gr.Blocks(title="Book Cover Scanner") as demo:
gr.Markdown(
"""
## Book Cover Scanner + Metadata Lookup
1. Upload a photo containing one or multiple book covers
2. The app will detect each cover, run OCR, then query OpenLibrary for metadata
3. Results appear in a table below, and you can download a CSV
"""
)
with gr.Row():
img_in = gr.Image(type="pil", label="Upload Image of Book Covers")
run_button = gr.Button("Scan & Lookup")
output_table = gr.Dataframe(
headers=["title", "author_name", "publisher", "first_publish_year"],
label="Detected Books with Metadata",
datatype="pandas",
)
download_file = gr.File(label="Download CSV")
def on_run(image):
df, file_buffer = process_image(image)
return df, file_buffer
run_button.click(
fn=on_run,
inputs=[img_in],
outputs=[output_table, download_file],
)
return demo
if __name__ == "__main__":
demo_app = build_interface()
demo_app.launch()