Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
import pytesseract | |
import requests | |
import pandas as pd | |
import gradio as gr | |
import io | |
from io import BytesIO | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 1. Utility: Detect rectangular contours (approximate book covers) | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def detect_book_regions(image: np.ndarray, min_area=10000, eps_coef=0.02): | |
""" | |
Detect rectangular regions in an image that likely correspond to book covers. | |
Returns a list of bounding boxes: (x, y, w, h). | |
""" | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
blurred = cv2.GaussianBlur(gray, (5, 5), 0) | |
edges = cv2.Canny(blurred, 50, 150) | |
# Dilate + erode to close gaps | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) | |
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel) | |
contours, _ = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
boxes = [] | |
for cnt in contours: | |
area = cv2.contourArea(cnt) | |
if area < min_area: | |
continue | |
peri = cv2.arcLength(cnt, True) | |
approx = cv2.approxPolyDP(cnt, eps_coef * peri, True) | |
# Keep only quadrilaterals | |
if len(approx) == 4: | |
x, y, w, h = cv2.boundingRect(approx) | |
ar = w / float(h) | |
# Filter by typical book-cover aspect ratios | |
if 0.4 < ar < 0.9 or 1.0 < ar < 1.6: | |
boxes.append((x, y, w, h)) | |
# Sort leftβright, topβbottom | |
boxes = sorted(boxes, key=lambda b: (b[1], b[0])) | |
return boxes | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 2. OCR on a cropped region | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def ocr_on_region(image: np.ndarray, box: tuple): | |
""" | |
Crop the image to the given box and run Tesseract OCR. | |
Return the raw OCR text. | |
""" | |
x, y, w, h = box | |
cropped = image[y : y + h, x : x + w] | |
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY) | |
_, thresh_crop = cv2.threshold( | |
gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU | |
) | |
custom_config = r"--oem 3 --psm 6" | |
text = pytesseract.image_to_string(thresh_crop, config=custom_config) | |
return text.strip() | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 3. Query OpenLibrary API | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def query_openlibrary(title_text: str, author_text: str = None): | |
""" | |
Search OpenLibrary by title (and optional author). | |
Return a dict with title, author_name, publisher, first_publish_year, or None. | |
""" | |
base_url = "https://openlibrary.org/search.json" | |
params = {"title": title_text} | |
if author_text: | |
params["author"] = author_text | |
try: | |
resp = requests.get(base_url, params=params, timeout=5) | |
resp.raise_for_status() | |
data = resp.json() | |
if data.get("docs"): | |
doc = data["docs"][0] | |
return { | |
"title": doc.get("title", ""), | |
"author_name": ", ".join(doc.get("author_name", [])), | |
"publisher": ", ".join(doc.get("publisher", [])), | |
"first_publish_year": doc.get("first_publish_year", ""), | |
} | |
except Exception as e: | |
print(f"OpenLibrary query failed: {e}") | |
return None | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 4. Process one uploaded image | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def process_image(image_file): | |
""" | |
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers β OCR β OpenLibrary. | |
Return a DataFrame and a (filename, BytesIO) tuple for CSV. | |
""" | |
img = np.array(image_file)[:, :, ::-1].copy() # PIL to OpenCV BGR | |
boxes = detect_book_regions(img) | |
records = [] | |
for box in boxes: | |
ocr_text = ocr_on_region(img, box) | |
lines = [l.strip() for l in ocr_text.splitlines() if l.strip()] | |
if not lines: | |
continue | |
title_guess = lines[0] | |
author_guess = lines[1] if len(lines) > 1 else None | |
meta = query_openlibrary(title_guess, author_guess) | |
if meta: | |
records.append(meta) | |
else: | |
records.append( | |
{ | |
"title": title_guess, | |
"author_name": author_guess or "", | |
"publisher": "", | |
"first_publish_year": "", | |
} | |
) | |
if not records: | |
df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"]) | |
# Build an empty CSV bytes buffer | |
empty_csv = df_empty.to_csv(index=False).encode() | |
buffer = io.BytesIO(empty_csv) | |
buffer.name = "books.csv" | |
return df_empty, buffer | |
df = pd.DataFrame(records) | |
csv_bytes = df.to_csv(index=False).encode() | |
buffer = io.BytesIO(csv_bytes) | |
buffer.name = "books.csv" | |
return df, buffer | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 5. Build the Gradio Interface | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def build_interface(): | |
with gr.Blocks(title="Book Cover Scanner") as demo: | |
gr.Markdown( | |
""" | |
## Book Cover Scanner + Metadata Lookup | |
1. Upload a photo containing one or multiple book covers | |
2. The app will detect each cover, run OCR, then query OpenLibrary for metadata | |
3. Results appear in a table below, and you can download a CSV | |
""" | |
) | |
with gr.Row(): | |
img_in = gr.Image(type="pil", label="Upload Image of Book Covers") | |
run_button = gr.Button("Scan & Lookup") | |
output_table = gr.Dataframe( | |
headers=["title", "author_name", "publisher", "first_publish_year"], | |
label="Detected Books with Metadata", | |
datatype="pandas", | |
) | |
download_file = gr.File(label="Download CSV") | |
def on_run(image): | |
df, file_buffer = process_image(image) | |
return df, file_buffer | |
run_button.click( | |
fn=on_run, | |
inputs=[img_in], | |
outputs=[output_table, download_file], | |
) | |
return demo | |
if __name__ == "__main__": | |
demo_app = build_interface() | |
demo_app.launch() |