File size: 7,638 Bytes
430a6c7
 
 
 
 
 
4721608
430a6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
972f9e7
430a6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721608
430a6c7
4721608
 
 
 
b97942e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721608
b97942e
 
 
 
 
 
 
 
 
 
 
 
4721608
b97942e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721608
 
 
 
 
 
 
 
b97942e
 
 
4721608
 
 
 
 
b97942e
 
 
4721608
 
 
b97942e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721608
 
b97942e
4721608
b97942e
 
4721608
 
b97942e
4721608
 
 
 
 
b97942e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
import io
from io import BytesIO

# ──────────────────────────────────────────────────────────────
# 1. Utility: Detect rectangular contours (approximate book covers)
# ──────────────────────────────────────────────────────────────
def detect_book_regions(image: np.ndarray, min_area=10000, eps_coef=0.02):
    """
    Detect rectangular regions in an image that likely correspond to book covers.
    Returns a list of bounding boxes: (x, y, w, h).
    """
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    edges = cv2.Canny(blurred, 50, 150)

    # Dilate + erode to close gaps
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)

    contours, _ = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    boxes = []

    for cnt in contours:
        area = cv2.contourArea(cnt)
        if area < min_area:
            continue

        peri = cv2.arcLength(cnt, True)
        approx = cv2.approxPolyDP(cnt, eps_coef * peri, True)

        # Keep only quadrilaterals
        if len(approx) == 4:
            x, y, w, h = cv2.boundingRect(approx)
            ar = w / float(h)
            # Filter by typical book-cover aspect ratios
            if 0.4 < ar < 0.9 or 1.0 < ar < 1.6:
                boxes.append((x, y, w, h))

    # Sort left→right, top→bottom
    boxes = sorted(boxes, key=lambda b: (b[1], b[0]))
    return boxes

# ──────────────────────────────────────────────────────────────
# 2. OCR on a cropped region
# ──────────────────────────────────────────────────────────────
def ocr_on_region(image: np.ndarray, box: tuple):
    """
    Crop the image to the given box and run Tesseract OCR.
    Return the raw OCR text.
    """
    x, y, w, h = box
    cropped = image[y : y + h, x : x + w]
    gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
    _, thresh_crop = cv2.threshold(
        gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
    )
    custom_config = r"--oem 3 --psm 6"
    text = pytesseract.image_to_string(thresh_crop, config=custom_config)
    return text.strip()

# ──────────────────────────────────────────────────────────────
# 3. Query OpenLibrary API
# ──────────────────────────────────────────────────────────────
def query_openlibrary(title_text: str, author_text: str = None):
    """
    Search OpenLibrary by title (and optional author).
    Return a dict with title, author_name, publisher, first_publish_year, or None.
    """
    base_url = "https://openlibrary.org/search.json"
    params = {"title": title_text}
    if author_text:
        params["author"] = author_text

    try:
        resp = requests.get(base_url, params=params, timeout=5)
        resp.raise_for_status()
        data = resp.json()
        if data.get("docs"):
            doc = data["docs"][0]
            return {
                "title": doc.get("title", ""),
                "author_name": ", ".join(doc.get("author_name", [])),
                "publisher": ", ".join(doc.get("publisher", [])),
                "first_publish_year": doc.get("first_publish_year", ""),
            }
    except Exception as e:
        print(f"OpenLibrary query failed: {e}")

    return None

# ──────────────────────────────────────────────────────────────
# 4. Process one uploaded image
# ──────────────────────────────────────────────────────────────
def process_image(image_file):
    """
    Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers β†’ OCR β†’ OpenLibrary.
    Return a DataFrame and a (filename, BytesIO) tuple for CSV.
    """
    img = np.array(image_file)[:, :, ::-1].copy()  # PIL to OpenCV BGR
    boxes = detect_book_regions(img)
    records = []

    for box in boxes:
        ocr_text = ocr_on_region(img, box)
        lines = [l.strip() for l in ocr_text.splitlines() if l.strip()]
        if not lines:
            continue

        title_guess = lines[0]
        author_guess = lines[1] if len(lines) > 1 else None
        meta = query_openlibrary(title_guess, author_guess)

        if meta:
            records.append(meta)
        else:
            records.append(
                {
                    "title": title_guess,
                    "author_name": author_guess or "",
                    "publisher": "",
                    "first_publish_year": "",
                }
            )

    if not records:
        df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
        # Build an empty CSV bytes buffer
        empty_csv = df_empty.to_csv(index=False).encode()
        buffer = io.BytesIO(empty_csv)
        buffer.name = "books.csv"
        return df_empty, buffer

    df = pd.DataFrame(records)
    csv_bytes = df.to_csv(index=False).encode()
    buffer = io.BytesIO(csv_bytes)
    buffer.name = "books.csv"
    return df, buffer

# ──────────────────────────────────────────────────────────────
# 5. Build the Gradio Interface
# ──────────────────────────────────────────────────────────────
def build_interface():
    with gr.Blocks(title="Book Cover Scanner") as demo:
        gr.Markdown(
            """
            ## Book Cover Scanner + Metadata Lookup
            1. Upload a photo containing one or multiple book covers  
            2. The app will detect each cover, run OCR, then query OpenLibrary for metadata  
            3. Results appear in a table below, and you can download a CSV  
            """
        )

        with gr.Row():
            img_in = gr.Image(type="pil", label="Upload Image of Book Covers")
            run_button = gr.Button("Scan & Lookup")

        output_table = gr.Dataframe(
            headers=["title", "author_name", "publisher", "first_publish_year"],
            label="Detected Books with Metadata",
            datatype="pandas",
        )
        download_file = gr.File(label="Download CSV")

        def on_run(image):
            df, file_buffer = process_image(image)
            return df, file_buffer

        run_button.click(
            fn=on_run,
            inputs=[img_in],
            outputs=[output_table, download_file],
        )

    return demo

if __name__ == "__main__":
    demo_app = build_interface()
    demo_app.launch()