Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -54,6 +54,115 @@ def ocr_on_region(image: np.ndarray, box: tuple):
|
|
54 |
Return the raw OCR text.
|
55 |
"""
|
56 |
x, y, w, h = box
|
57 |
-
cropped = image[y:y+h, x:x+w]
|
58 |
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
|
59 |
-
_, thresh_crop = cv2.threshold(gray_crop, 0, 255, cv2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
Return the raw OCR text.
|
55 |
"""
|
56 |
x, y, w, h = box
|
57 |
+
cropped = image[y:y + h, x:x + w]
|
58 |
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
|
59 |
+
_, thresh_crop = cv2.threshold(gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
60 |
+
custom_config = r'--oem 3 --psm 6'
|
61 |
+
text = pytesseract.image_to_string(thresh_crop, config=custom_config)
|
62 |
+
return text.strip()
|
63 |
+
|
64 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
65 |
+
# 3. Query OpenLibrary API
|
66 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
67 |
+
def query_openlibrary(title_text: str, author_text: str = None):
|
68 |
+
"""
|
69 |
+
Search OpenLibrary by title (and optional author).
|
70 |
+
Return a dict with title, author_name, publisher, first_publish_year, or None.
|
71 |
+
"""
|
72 |
+
base_url = "https://openlibrary.org/search.json"
|
73 |
+
params = {"title": title_text}
|
74 |
+
if author_text:
|
75 |
+
params["author"] = author_text
|
76 |
+
|
77 |
+
try:
|
78 |
+
resp = requests.get(base_url, params=params, timeout=5)
|
79 |
+
resp.raise_for_status()
|
80 |
+
data = resp.json()
|
81 |
+
if data.get("docs"):
|
82 |
+
doc = data["docs"][0]
|
83 |
+
return {
|
84 |
+
"title": doc.get("title", ""),
|
85 |
+
"author_name": ", ".join(doc.get("author_name", [])),
|
86 |
+
"publisher": ", ".join(doc.get("publisher", [])),
|
87 |
+
"first_publish_year": doc.get("first_publish_year", "")
|
88 |
+
}
|
89 |
+
except Exception as e:
|
90 |
+
print(f"OpenLibrary query failed: {e}")
|
91 |
+
|
92 |
+
return None
|
93 |
+
|
94 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
95 |
+
# 4. Process one uploaded image
|
96 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
97 |
+
def process_image(image_file):
|
98 |
+
"""
|
99 |
+
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers β OCR β OpenLibrary.
|
100 |
+
Return a DataFrame and CSV bytes.
|
101 |
+
"""
|
102 |
+
img = np.array(image_file)[:, :, ::-1].copy() # PIL to OpenCV BGR
|
103 |
+
boxes = detect_book_regions(img)
|
104 |
+
records = []
|
105 |
+
|
106 |
+
for box in boxes:
|
107 |
+
ocr_text = ocr_on_region(img, box)
|
108 |
+
lines = [l.strip() for l in ocr_text.splitlines() if l.strip()]
|
109 |
+
if not lines:
|
110 |
+
continue
|
111 |
+
|
112 |
+
title_guess = lines[0]
|
113 |
+
author_guess = lines[1] if len(lines) > 1 else None
|
114 |
+
meta = query_openlibrary(title_guess, author_guess)
|
115 |
+
|
116 |
+
if meta:
|
117 |
+
records.append(meta)
|
118 |
+
else:
|
119 |
+
records.append({
|
120 |
+
"title": title_guess,
|
121 |
+
"author_name": author_guess or "",
|
122 |
+
"publisher": "",
|
123 |
+
"first_publish_year": "",
|
124 |
+
})
|
125 |
+
|
126 |
+
if not records:
|
127 |
+
df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
|
128 |
+
return df_empty, df_empty.to_csv(index=False).encode()
|
129 |
+
|
130 |
+
df = pd.DataFrame(records)
|
131 |
+
csv_bytes = df.to_csv(index=False).encode()
|
132 |
+
return df, csv_bytes
|
133 |
+
|
134 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
135 |
+
# 5. Build the Gradio Interface
|
136 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
137 |
+
def build_interface():
|
138 |
+
with gr.Blocks(title="Book Cover Scanner") as demo:
|
139 |
+
gr.Markdown(
|
140 |
+
"""
|
141 |
+
## Book Cover Scanner + Metadata Lookup
|
142 |
+
1. Upload a photo containing one or multiple book covers
|
143 |
+
2. The app will detect each cover, run OCR, then query OpenLibrary for metadata
|
144 |
+
3. Results appear in a table below, and you can download a CSV
|
145 |
+
"""
|
146 |
+
)
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
img_in = gr.Image(type="pil", label="Upload Image of Book Covers")
|
150 |
+
run_button = gr.Button("Scan & Lookup")
|
151 |
+
|
152 |
+
output_table = gr.Dataframe(
|
153 |
+
headers=["title", "author_name", "publisher", "first_publish_year"],
|
154 |
+
label="Detected Books with Metadata"
|
155 |
+
)
|
156 |
+
download_btn = gr.Download(label="Download CSV")
|
157 |
+
|
158 |
+
def on_run(image):
|
159 |
+
df, csv_bytes = process_image(image)
|
160 |
+
return df, csv_bytes
|
161 |
+
|
162 |
+
run_button.click(fn=on_run, inputs=[img_in], outputs=[output_table, download_btn])
|
163 |
+
|
164 |
+
return demo
|
165 |
+
|
166 |
+
if __name__ == "__main__":
|
167 |
+
demo_app = build_interface()
|
168 |
+
demo_app.launch()
|