Spaces:
Running
on
Zero
Running
on
Zero
mcp-compatible
#2
by
victor
HF Staff
- opened
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🏢
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
CHANGED
@@ -33,17 +33,13 @@ def end_session(req: gr.Request):
|
|
33 |
|
34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
"""
|
36 |
-
Preprocess the input image
|
37 |
-
|
38 |
-
This function is called when a user uploads an image or selects an example.
|
39 |
-
It applies background removal and other preprocessing steps necessary for
|
40 |
-
optimal 3D model generation.
|
41 |
|
42 |
Args:
|
43 |
-
image (Image.Image): The input image
|
44 |
|
45 |
Returns:
|
46 |
-
Image.Image: The preprocessed image
|
47 |
"""
|
48 |
processed_image = pipeline.preprocess_image(image)
|
49 |
return processed_image
|
@@ -51,16 +47,13 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
51 |
|
52 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
53 |
"""
|
54 |
-
Preprocess a list of input images
|
55 |
-
|
56 |
-
This function is called when users upload multiple images in the gallery.
|
57 |
-
It processes each image to prepare them for the multi-image 3D generation pipeline.
|
58 |
|
59 |
Args:
|
60 |
-
images (List[Tuple[Image.Image, str]]): The input images
|
61 |
|
62 |
Returns:
|
63 |
-
List[Image.Image]: The preprocessed images
|
64 |
"""
|
65 |
images = [image[0] for image in images]
|
66 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
@@ -109,23 +102,13 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
109 |
|
110 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
111 |
"""
|
112 |
-
Get the random seed
|
113 |
-
|
114 |
-
This function is called by the generate button to determine whether to use
|
115 |
-
a random seed or the user-specified seed value.
|
116 |
-
|
117 |
-
Args:
|
118 |
-
randomize_seed (bool): Whether to generate a random seed
|
119 |
-
seed (int): The user-specified seed value
|
120 |
-
|
121 |
-
Returns:
|
122 |
-
int: The seed to use for generation
|
123 |
"""
|
124 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
125 |
|
126 |
|
127 |
-
@spaces.GPU
|
128 |
-
def
|
129 |
image: Image.Image,
|
130 |
multiimages: List[Tuple[Image.Image, str]],
|
131 |
is_multiimage: bool,
|
@@ -135,12 +118,10 @@ def generate_and_extract_glb(
|
|
135 |
slat_guidance_strength: float,
|
136 |
slat_sampling_steps: int,
|
137 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
138 |
-
mesh_simplify: float,
|
139 |
-
texture_size: int,
|
140 |
req: gr.Request,
|
141 |
-
) -> Tuple[dict, str
|
142 |
"""
|
143 |
-
Convert an image to a 3D model
|
144 |
|
145 |
Args:
|
146 |
image (Image.Image): The input image.
|
@@ -152,18 +133,12 @@ def generate_and_extract_glb(
|
|
152 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
153 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
154 |
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
155 |
-
mesh_simplify (float): The mesh simplification factor.
|
156 |
-
texture_size (int): The texture resolution.
|
157 |
|
158 |
Returns:
|
159 |
dict: The information of the generated 3D model.
|
160 |
str: The path to the video of the 3D model.
|
161 |
-
str: The path to the extracted GLB file.
|
162 |
-
str: The path to the extracted GLB file (for download).
|
163 |
"""
|
164 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
165 |
-
|
166 |
-
# Generate 3D model
|
167 |
if not is_multiimage:
|
168 |
outputs = pipeline.run(
|
169 |
image,
|
@@ -195,43 +170,53 @@ def generate_and_extract_glb(
|
|
195 |
},
|
196 |
mode=multiimage_algo,
|
197 |
)
|
198 |
-
|
199 |
-
# Render video
|
200 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
201 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
202 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
203 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
204 |
imageio.mimsave(video_path, video, fps=15)
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
210 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
211 |
glb.export(glb_path)
|
212 |
-
|
213 |
-
# Pack state for optional Gaussian extraction
|
214 |
-
state = pack_state(gs, mesh)
|
215 |
-
|
216 |
torch.cuda.empty_cache()
|
217 |
-
return
|
218 |
|
219 |
|
220 |
@spaces.GPU
|
221 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
222 |
"""
|
223 |
-
Extract a Gaussian
|
224 |
-
|
225 |
-
This function is called when the user clicks "Extract Gaussian" button.
|
226 |
-
It converts the 3D model state into a .ply file format containing
|
227 |
-
Gaussian splatting data for advanced 3D applications.
|
228 |
|
229 |
Args:
|
230 |
-
state (dict): The state of the generated 3D model
|
231 |
-
req (gr.Request): Gradio request object for session management
|
232 |
|
233 |
Returns:
|
234 |
-
|
235 |
"""
|
236 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
237 |
gs, _ = unpack_state(state)
|
@@ -257,17 +242,7 @@ def prepare_multi_example() -> List[Image.Image]:
|
|
257 |
|
258 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
259 |
"""
|
260 |
-
Split
|
261 |
-
|
262 |
-
This function is called when users select multi-image examples that contain
|
263 |
-
multiple views in a single concatenated image. It automatically splits them
|
264 |
-
based on alpha channel boundaries and preprocesses each view.
|
265 |
-
|
266 |
-
Args:
|
267 |
-
image (Image.Image): A concatenated image containing multiple views
|
268 |
-
|
269 |
-
Returns:
|
270 |
-
List[Image.Image]: List of individual preprocessed view images
|
271 |
"""
|
272 |
image = np.array(image)
|
273 |
alpha = image[..., 3]
|
@@ -283,9 +258,8 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
283 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
284 |
gr.Markdown("""
|
285 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
286 |
-
* Upload an image and click "Generate
|
287 |
-
* If you
|
288 |
-
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
|
289 |
|
290 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
291 |
""")
|
@@ -315,13 +289,16 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
315 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
316 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
317 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
|
|
|
|
318 |
|
319 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
320 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
321 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
325 |
gr.Markdown("""
|
326 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
327 |
""")
|
@@ -389,17 +366,26 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
389 |
inputs=[randomize_seed, seed],
|
390 |
outputs=[seed],
|
391 |
).then(
|
392 |
-
|
393 |
-
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo
|
394 |
-
outputs=[output_buf, video_output
|
395 |
).then(
|
396 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
397 |
-
outputs=[
|
398 |
)
|
399 |
|
400 |
video_output.clear(
|
401 |
-
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)
|
402 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
)
|
404 |
|
405 |
extract_gs_btn.click(
|
@@ -412,8 +398,8 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
412 |
)
|
413 |
|
414 |
model_output.clear(
|
415 |
-
lambda:
|
416 |
-
outputs=[download_glb
|
417 |
)
|
418 |
|
419 |
|
@@ -425,4 +411,4 @@ if __name__ == "__main__":
|
|
425 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
426 |
except:
|
427 |
pass
|
428 |
-
demo.launch(
|
|
|
33 |
|
34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
"""
|
36 |
+
Preprocess the input image.
|
|
|
|
|
|
|
|
|
37 |
|
38 |
Args:
|
39 |
+
image (Image.Image): The input image.
|
40 |
|
41 |
Returns:
|
42 |
+
Image.Image: The preprocessed image.
|
43 |
"""
|
44 |
processed_image = pipeline.preprocess_image(image)
|
45 |
return processed_image
|
|
|
47 |
|
48 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
49 |
"""
|
50 |
+
Preprocess a list of input images.
|
|
|
|
|
|
|
51 |
|
52 |
Args:
|
53 |
+
images (List[Tuple[Image.Image, str]]): The input images.
|
54 |
|
55 |
Returns:
|
56 |
+
List[Image.Image]: The preprocessed images.
|
57 |
"""
|
58 |
images = [image[0] for image in images]
|
59 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
|
|
102 |
|
103 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
104 |
"""
|
105 |
+
Get the random seed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
"""
|
107 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
108 |
|
109 |
|
110 |
+
@spaces.GPU
|
111 |
+
def image_to_3d(
|
112 |
image: Image.Image,
|
113 |
multiimages: List[Tuple[Image.Image, str]],
|
114 |
is_multiimage: bool,
|
|
|
118 |
slat_guidance_strength: float,
|
119 |
slat_sampling_steps: int,
|
120 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
|
|
|
|
121 |
req: gr.Request,
|
122 |
+
) -> Tuple[dict, str]:
|
123 |
"""
|
124 |
+
Convert an image to a 3D model.
|
125 |
|
126 |
Args:
|
127 |
image (Image.Image): The input image.
|
|
|
133 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
134 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
135 |
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
|
|
|
|
136 |
|
137 |
Returns:
|
138 |
dict: The information of the generated 3D model.
|
139 |
str: The path to the video of the 3D model.
|
|
|
|
|
140 |
"""
|
141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
142 |
if not is_multiimage:
|
143 |
outputs = pipeline.run(
|
144 |
image,
|
|
|
170 |
},
|
171 |
mode=multiimage_algo,
|
172 |
)
|
|
|
|
|
173 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
174 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
175 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
176 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
177 |
imageio.mimsave(video_path, video, fps=15)
|
178 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
179 |
+
torch.cuda.empty_cache()
|
180 |
+
return state, video_path
|
181 |
+
|
182 |
+
|
183 |
+
@spaces.GPU(duration=90)
|
184 |
+
def extract_glb(
|
185 |
+
state: dict,
|
186 |
+
mesh_simplify: float,
|
187 |
+
texture_size: int,
|
188 |
+
req: gr.Request,
|
189 |
+
) -> Tuple[str, str]:
|
190 |
+
"""
|
191 |
+
Extract a GLB file from the 3D model.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
state (dict): The state of the generated 3D model.
|
195 |
+
mesh_simplify (float): The mesh simplification factor.
|
196 |
+
texture_size (int): The texture resolution.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
str: The path to the extracted GLB file.
|
200 |
+
"""
|
201 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
202 |
+
gs, mesh = unpack_state(state)
|
203 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
204 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
205 |
glb.export(glb_path)
|
|
|
|
|
|
|
|
|
206 |
torch.cuda.empty_cache()
|
207 |
+
return glb_path, glb_path
|
208 |
|
209 |
|
210 |
@spaces.GPU
|
211 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
212 |
"""
|
213 |
+
Extract a Gaussian file from the 3D model.
|
|
|
|
|
|
|
|
|
214 |
|
215 |
Args:
|
216 |
+
state (dict): The state of the generated 3D model.
|
|
|
217 |
|
218 |
Returns:
|
219 |
+
str: The path to the extracted Gaussian file.
|
220 |
"""
|
221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
222 |
gs, _ = unpack_state(state)
|
|
|
242 |
|
243 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
244 |
"""
|
245 |
+
Split an image into multiple views.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
"""
|
247 |
image = np.array(image)
|
248 |
alpha = image[..., 3]
|
|
|
258 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
259 |
gr.Markdown("""
|
260 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
261 |
+
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
262 |
+
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
|
|
263 |
|
264 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
265 |
""")
|
|
|
289 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
290 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
291 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
292 |
+
|
293 |
+
generate_btn = gr.Button("Generate")
|
294 |
|
295 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
296 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
297 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
298 |
+
|
299 |
+
with gr.Row():
|
300 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
301 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
302 |
gr.Markdown("""
|
303 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
304 |
""")
|
|
|
366 |
inputs=[randomize_seed, seed],
|
367 |
outputs=[seed],
|
368 |
).then(
|
369 |
+
image_to_3d,
|
370 |
+
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
371 |
+
outputs=[output_buf, video_output],
|
372 |
).then(
|
373 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
374 |
+
outputs=[extract_glb_btn, extract_gs_btn],
|
375 |
)
|
376 |
|
377 |
video_output.clear(
|
378 |
+
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
379 |
+
outputs=[extract_glb_btn, extract_gs_btn],
|
380 |
+
)
|
381 |
+
|
382 |
+
extract_glb_btn.click(
|
383 |
+
extract_glb,
|
384 |
+
inputs=[output_buf, mesh_simplify, texture_size],
|
385 |
+
outputs=[model_output, download_glb],
|
386 |
+
).then(
|
387 |
+
lambda: gr.Button(interactive=True),
|
388 |
+
outputs=[download_glb],
|
389 |
)
|
390 |
|
391 |
extract_gs_btn.click(
|
|
|
398 |
)
|
399 |
|
400 |
model_output.clear(
|
401 |
+
lambda: gr.Button(interactive=False),
|
402 |
+
outputs=[download_glb],
|
403 |
)
|
404 |
|
405 |
|
|
|
411 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
412 |
except:
|
413 |
pass
|
414 |
+
demo.launch()
|