Spaces:
Running
Running
Update prediction.py
Browse files- prediction.py +17 -9
prediction.py
CHANGED
@@ -20,15 +20,15 @@ torch.backends.cudnn.benchmark = False
|
|
20 |
# Check if CUDA is available for GPU acceleration
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
23 |
-
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
24 |
-
@st.cache_resource
|
25 |
-
def load_chemberta():
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
tokenizer, chemberta = load_chemberta()
|
32 |
|
33 |
|
34 |
# ------------------------ Load Scalers ------------------------
|
@@ -67,6 +67,13 @@ class TransformerRegressor(nn.Module):
|
|
67 |
x = self.transformer_encoder(x)
|
68 |
x = x.mean(dim=1)
|
69 |
return self.regression_head(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
@st.cache_resource
|
72 |
def load_model():
|
@@ -80,6 +87,7 @@ def load_model():
|
|
80 |
# Call them to load the actual models
|
81 |
tokenizer, chemberta = load_chemberta()
|
82 |
model = load_model()
|
|
|
83 |
# ------------------------ Descriptors ------------------------
|
84 |
def compute_descriptors(smiles: str):
|
85 |
mol = Chem.MolFromSmiles(smiles)
|
|
|
20 |
# Check if CUDA is available for GPU acceleration
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
23 |
+
# # ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
24 |
+
# @st.cache_resource
|
25 |
+
# def load_chemberta():
|
26 |
+
# tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
27 |
+
# model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
28 |
+
# model.eval()
|
29 |
+
# model.to(device)
|
30 |
+
# return tokenizer, model
|
31 |
+
# tokenizer, chemberta = load_chemberta()
|
32 |
|
33 |
|
34 |
# ------------------------ Load Scalers ------------------------
|
|
|
67 |
x = self.transformer_encoder(x)
|
68 |
x = x.mean(dim=1)
|
69 |
return self.regression_head(x)
|
70 |
+
@st.cache_resource
|
71 |
+
def load_chemberta():
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
73 |
+
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
74 |
+
model.eval()
|
75 |
+
model.to(device)
|
76 |
+
return tokenizer, model
|
77 |
|
78 |
@st.cache_resource
|
79 |
def load_model():
|
|
|
87 |
# Call them to load the actual models
|
88 |
tokenizer, chemberta = load_chemberta()
|
89 |
model = load_model()
|
90 |
+
|
91 |
# ------------------------ Descriptors ------------------------
|
92 |
def compute_descriptors(smiles: str):
|
93 |
mol = Chem.MolFromSmiles(smiles)
|