Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,11 @@ import torch
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import spaces
|
5 |
|
6 |
-
# Model configuration
|
7 |
-
|
8 |
-
MEDITRON_MODEL = "epfl-llm/meditron-7b"
|
9 |
|
10 |
-
|
|
|
11 |
Ask 1-2 follow-up questions at a time to gather more details about:
|
12 |
- Detailed description of symptoms
|
13 |
- Duration (when did it start?)
|
@@ -19,30 +19,23 @@ Ask 1-2 follow-up questions at a time to gather more details about:
|
|
19 |
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
|
20 |
Respond empathetically and clearly. Always be professional and thorough."""
|
21 |
|
22 |
-
|
23 |
-
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
|
24 |
-
Based on the following patient information, provide ONLY:
|
25 |
1. One specific over-the-counter medicine with proper adult dosing instructions
|
26 |
2. One practical home remedy that might help
|
27 |
3. Clear guidance on when to seek professional medical care
|
|
|
28 |
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
|
29 |
-
<|im_end|>
|
30 |
-
<|im_start|>user
|
31 |
-
Patient information: {patient_info}
|
32 |
-
<|im_end|>
|
33 |
-
<|im_start|>assistant
|
34 |
-
"""
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
conversation_turns = 0
|
42 |
patient_data = []
|
43 |
|
44 |
-
def
|
45 |
-
"""Format the conversation
|
46 |
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
47 |
|
48 |
# Add conversation history
|
@@ -55,126 +48,143 @@ def build_llama2_prompt(system_prompt, history, user_input):
|
|
55 |
return prompt
|
56 |
|
57 |
@spaces.GPU
|
58 |
-
def
|
59 |
-
"""Load
|
60 |
-
global
|
61 |
-
|
62 |
-
if
|
63 |
-
print("Loading
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
torch_dtype=torch.float16,
|
68 |
-
device_map="auto"
|
69 |
-
)
|
70 |
-
print("Llama-2 model loaded successfully!")
|
71 |
-
|
72 |
-
if meditron_model is None:
|
73 |
-
print("Loading Meditron model...")
|
74 |
-
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
|
75 |
-
meditron_model = AutoModelForCausalLM.from_pretrained(
|
76 |
-
MEDITRON_MODEL,
|
77 |
torch_dtype=torch.float16,
|
78 |
-
device_map="auto"
|
|
|
79 |
)
|
80 |
-
print("
|
81 |
|
82 |
@spaces.GPU
|
83 |
-
def
|
84 |
-
"""Use
|
85 |
-
|
86 |
|
87 |
-
prompt
|
88 |
-
|
|
|
|
|
89 |
|
90 |
# Move inputs to the same device as the model
|
91 |
if torch.cuda.is_available():
|
92 |
-
inputs = {k: v.to(
|
93 |
|
94 |
with torch.no_grad():
|
95 |
-
outputs =
|
96 |
inputs["input_ids"],
|
97 |
attention_mask=inputs["attention_mask"],
|
98 |
-
max_new_tokens=
|
99 |
temperature=0.7,
|
100 |
top_p=0.9,
|
101 |
do_sample=True,
|
102 |
-
pad_token_id=
|
103 |
)
|
104 |
|
105 |
-
suggestion =
|
106 |
return suggestion
|
107 |
|
108 |
@spaces.GPU
|
109 |
def generate_response(message, history):
|
110 |
-
"""Generate
|
111 |
global conversation_turns, patient_data
|
112 |
|
113 |
-
# Load
|
114 |
-
|
115 |
|
116 |
# Track conversation turns
|
117 |
conversation_turns += 1
|
118 |
|
119 |
-
# Store
|
120 |
patient_data.append(message)
|
121 |
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
)
|
146 |
-
|
147 |
-
# Decode and extract Llama-2's response
|
148 |
-
full_response = llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
149 |
-
llama_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
|
150 |
-
|
151 |
-
# After 4 turns, add medicine suggestions from Meditron
|
152 |
-
if conversation_turns >= 4:
|
153 |
-
# Collect full patient conversation
|
154 |
-
full_patient_info = "\n".join(patient_data) + "\n\nSummary: " + llama_response
|
155 |
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
final_response = (
|
161 |
-
f"{
|
162 |
-
f"
|
163 |
-
f"
|
164 |
)
|
|
|
165 |
return final_response
|
166 |
-
|
167 |
-
return llama_response
|
168 |
|
169 |
# Create the Gradio interface
|
170 |
demo = gr.ChatInterface(
|
171 |
fn=generate_response,
|
172 |
-
title="Medical Assistant
|
173 |
-
description="
|
174 |
examples=[
|
175 |
-
"I have a cough and
|
176 |
-
"I've been having headaches
|
177 |
-
"My stomach
|
178 |
],
|
179 |
theme="soft"
|
180 |
)
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import spaces
|
5 |
|
6 |
+
# Model configuration - Using only Me-LLaMA 13B-chat
|
7 |
+
ME_LLAMA_MODEL = "clinicalnlplab/me-llama-13b-chat"
|
|
|
8 |
|
9 |
+
# System prompts for different phases
|
10 |
+
CONSULTATION_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
|
11 |
Ask 1-2 follow-up questions at a time to gather more details about:
|
12 |
- Detailed description of symptoms
|
13 |
- Duration (when did it start?)
|
|
|
19 |
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
|
20 |
Respond empathetically and clearly. Always be professional and thorough."""
|
21 |
|
22 |
+
MEDICINE_PROMPT = """You are a specialized medical assistant. Based on the patient information gathered, provide:
|
|
|
|
|
23 |
1. One specific over-the-counter medicine with proper adult dosing instructions
|
24 |
2. One practical home remedy that might help
|
25 |
3. Clear guidance on when to seek professional medical care
|
26 |
+
|
27 |
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
Patient information: {patient_info}"""
|
30 |
+
|
31 |
+
# Global variables
|
32 |
+
me_llama_model = None
|
33 |
+
me_llama_tokenizer = None
|
34 |
conversation_turns = 0
|
35 |
patient_data = []
|
36 |
|
37 |
+
def build_me_llama_prompt(system_prompt, history, user_input):
|
38 |
+
"""Format the conversation for Me-LLaMA chat model."""
|
39 |
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
40 |
|
41 |
# Add conversation history
|
|
|
48 |
return prompt
|
49 |
|
50 |
@spaces.GPU
|
51 |
+
def load_model_if_needed():
|
52 |
+
"""Load Me-LLaMA model only when GPU is available."""
|
53 |
+
global me_llama_model, me_llama_tokenizer
|
54 |
+
|
55 |
+
if me_llama_model is None:
|
56 |
+
print("Loading Me-LLaMA 13B-chat model...")
|
57 |
+
me_llama_tokenizer = AutoTokenizer.from_pretrained(ME_LLAMA_MODEL)
|
58 |
+
me_llama_model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
ME_LLAMA_MODEL,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
torch_dtype=torch.float16,
|
61 |
+
device_map="auto",
|
62 |
+
trust_remote_code=True
|
63 |
)
|
64 |
+
print("Me-LLaMA 13B-chat model loaded successfully!")
|
65 |
|
66 |
@spaces.GPU
|
67 |
+
def generate_medicine_suggestions(patient_info):
|
68 |
+
"""Use Me-LLaMA to generate medicine and remedy suggestions."""
|
69 |
+
load_model_if_needed()
|
70 |
|
71 |
+
# Create a simple prompt for medicine suggestions
|
72 |
+
prompt = f"<s>[INST] {MEDICINE_PROMPT.format(patient_info=patient_info)} [/INST] "
|
73 |
+
|
74 |
+
inputs = me_llama_tokenizer(prompt, return_tensors="pt")
|
75 |
|
76 |
# Move inputs to the same device as the model
|
77 |
if torch.cuda.is_available():
|
78 |
+
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
|
79 |
|
80 |
with torch.no_grad():
|
81 |
+
outputs = me_llama_model.generate(
|
82 |
inputs["input_ids"],
|
83 |
attention_mask=inputs["attention_mask"],
|
84 |
+
max_new_tokens=300,
|
85 |
temperature=0.7,
|
86 |
top_p=0.9,
|
87 |
do_sample=True,
|
88 |
+
pad_token_id=me_llama_tokenizer.eos_token_id
|
89 |
)
|
90 |
|
91 |
+
suggestion = me_llama_tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
92 |
return suggestion
|
93 |
|
94 |
@spaces.GPU
|
95 |
def generate_response(message, history):
|
96 |
+
"""Generate response using only Me-LLaMA for both consultation and medicine suggestions."""
|
97 |
global conversation_turns, patient_data
|
98 |
|
99 |
+
# Load model if needed
|
100 |
+
load_model_if_needed()
|
101 |
|
102 |
# Track conversation turns
|
103 |
conversation_turns += 1
|
104 |
|
105 |
+
# Store patient data
|
106 |
patient_data.append(message)
|
107 |
|
108 |
+
# Phase 1-3: Information gathering
|
109 |
+
if conversation_turns < 4:
|
110 |
+
# Build consultation prompt
|
111 |
+
prompt = build_me_llama_prompt(CONSULTATION_PROMPT, history, message)
|
112 |
+
|
113 |
+
inputs = me_llama_tokenizer(prompt, return_tensors="pt")
|
114 |
+
|
115 |
+
# Move inputs to the same device as the model
|
116 |
+
if torch.cuda.is_available():
|
117 |
+
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
|
118 |
+
|
119 |
+
# Generate consultation response
|
120 |
+
with torch.no_grad():
|
121 |
+
outputs = me_llama_model.generate(
|
122 |
+
inputs["input_ids"],
|
123 |
+
attention_mask=inputs["attention_mask"],
|
124 |
+
max_new_tokens=400,
|
125 |
+
temperature=0.7,
|
126 |
+
top_p=0.9,
|
127 |
+
do_sample=True,
|
128 |
+
pad_token_id=me_llama_tokenizer.eos_token_id
|
129 |
+
)
|
130 |
+
|
131 |
+
# Decode response
|
132 |
+
full_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
133 |
+
response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
|
134 |
+
|
135 |
+
return response
|
136 |
+
|
137 |
+
# Phase 4+: Summary and medicine suggestions
|
138 |
+
else:
|
139 |
+
# First, get summary from consultation
|
140 |
+
summary_prompt = build_me_llama_prompt(
|
141 |
+
CONSULTATION_PROMPT + "\n\nNow summarize what you've learned and suggest when professional care may be needed.",
|
142 |
+
history,
|
143 |
+
message
|
144 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
inputs = me_llama_tokenizer(summary_prompt, return_tensors="pt")
|
147 |
+
|
148 |
+
if torch.cuda.is_available():
|
149 |
+
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
|
150 |
+
|
151 |
+
# Generate summary
|
152 |
+
with torch.no_grad():
|
153 |
+
outputs = me_llama_model.generate(
|
154 |
+
inputs["input_ids"],
|
155 |
+
attention_mask=inputs["attention_mask"],
|
156 |
+
max_new_tokens=400,
|
157 |
+
temperature=0.7,
|
158 |
+
top_p=0.9,
|
159 |
+
do_sample=True,
|
160 |
+
pad_token_id=me_llama_tokenizer.eos_token_id
|
161 |
+
)
|
162 |
|
163 |
+
summary_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
164 |
+
summary = summary_response.split('[/INST]')[-1].split('</s>')[0].strip()
|
165 |
+
|
166 |
+
# Then get medicine suggestions using the same model
|
167 |
+
full_patient_info = "\n".join(patient_data) + f"\n\nMedical Summary: {summary}"
|
168 |
+
medicine_suggestions = generate_medicine_suggestions(full_patient_info)
|
169 |
+
|
170 |
+
# Combine both responses
|
171 |
final_response = (
|
172 |
+
f"**MEDICAL SUMMARY:**\n{summary}\n\n"
|
173 |
+
f"**MEDICATION AND HOME CARE SUGGESTIONS:**\n{medicine_suggestions}\n\n"
|
174 |
+
f"**DISCLAIMER:** This is AI-generated advice for informational purposes only. Please consult a licensed healthcare provider for proper medical diagnosis and treatment."
|
175 |
)
|
176 |
+
|
177 |
return final_response
|
|
|
|
|
178 |
|
179 |
# Create the Gradio interface
|
180 |
demo = gr.ChatInterface(
|
181 |
fn=generate_response,
|
182 |
+
title="🏥 Complete Medical Assistant - Me-LLaMA 13B",
|
183 |
+
description="Comprehensive medical consultation powered by Me-LLaMA 13B-chat. One model handles both consultation and medicine suggestions. Tell me about your symptoms!",
|
184 |
examples=[
|
185 |
+
"I have a persistent cough and sore throat for 3 days",
|
186 |
+
"I've been having severe headaches and feel dizzy",
|
187 |
+
"My stomach hurts and I feel nauseous after eating"
|
188 |
],
|
189 |
theme="soft"
|
190 |
)
|