Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import spaces
|
5 |
-
from langchain_community.llms import HuggingFacePipeline
|
6 |
-
from langchain_core.prompts import PromptTemplate
|
7 |
-
from langchain.chains import LLMChain
|
8 |
-
from langchain_core.runnables import RunnableWithMessageHistory
|
9 |
-
from langchain.memory import ConversationBufferMemory
|
10 |
|
11 |
# Model configuration
|
12 |
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
|
@@ -38,105 +33,110 @@ Patient information: {patient_info}
|
|
38 |
<|im_start|>assistant
|
39 |
"""
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
42 |
conversation_turns = 0
|
43 |
patient_data = []
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
llama_pipeline = pipeline(
|
58 |
-
"text-generation",
|
59 |
-
model=llama_model,
|
60 |
-
tokenizer=llama_tokenizer,
|
61 |
-
max_new_tokens=512,
|
62 |
-
temperature=0.7,
|
63 |
-
top_p=0.9,
|
64 |
-
do_sample=True
|
65 |
-
)
|
66 |
-
llama_llm = HuggingFacePipeline(pipeline=llama_pipeline)
|
67 |
-
print("Llama-2 model loaded successfully!")
|
68 |
-
|
69 |
-
print("Loading Meditron model...")
|
70 |
-
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
|
71 |
-
meditron_model = AutoModelForCausalLM.from_pretrained(
|
72 |
-
MEDITRON_MODEL,
|
73 |
-
torch_dtype=torch.float16,
|
74 |
-
device_map="auto"
|
75 |
-
)
|
76 |
-
# Create a pipeline for Meditron
|
77 |
-
meditron_pipeline = pipeline(
|
78 |
-
"text-generation",
|
79 |
-
model=meditron_model,
|
80 |
-
tokenizer=meditron_tokenizer,
|
81 |
-
max_new_tokens=256,
|
82 |
-
temperature=0.7,
|
83 |
-
top_p=0.9,
|
84 |
-
do_sample=True
|
85 |
-
)
|
86 |
-
meditron_llm = HuggingFacePipeline(pipeline=meditron_pipeline)
|
87 |
-
print("Meditron model loaded successfully!")
|
88 |
-
|
89 |
-
return llama_llm, meditron_llm, llama_tokenizer, meditron_tokenizer
|
90 |
-
|
91 |
-
# Load models
|
92 |
-
llama_llm, meditron_llm, llama_tokenizer, meditron_tokenizer = load_models()
|
93 |
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
@spaces.GPU
|
109 |
def generate_response(message, history):
|
|
|
110 |
global conversation_turns, patient_data
|
|
|
|
|
|
|
|
|
|
|
111 |
conversation_turns += 1
|
112 |
|
113 |
-
# Store
|
114 |
patient_data.append(message)
|
115 |
|
116 |
-
# Format the prompt with system instructions
|
117 |
-
if conversation_turns >= 4:
|
118 |
-
# Add summarization instruction after 4 turns
|
119 |
-
prompt = f"{SYSTEM_PROMPT}\n\nNow summarize what you've learned and suggest when professional care may be needed.\n\n{message}"
|
120 |
-
else:
|
121 |
-
prompt = f"{SYSTEM_PROMPT}\n\n{message}"
|
122 |
-
|
123 |
# Build the prompt with proper Llama-2 formatting
|
124 |
-
|
125 |
|
126 |
-
# Add
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
-
formatted_prompt += f"{message} [/INST] "
|
132 |
|
133 |
-
#
|
134 |
-
|
|
|
135 |
|
|
|
136 |
with torch.no_grad():
|
137 |
-
outputs =
|
138 |
-
inputs
|
139 |
-
attention_mask=inputs
|
140 |
max_new_tokens=512,
|
141 |
temperature=0.7,
|
142 |
top_p=0.9,
|
@@ -153,20 +153,8 @@ def generate_response(message, history):
|
|
153 |
# Collect full patient conversation
|
154 |
full_patient_info = "\n".join(patient_data) + "\n\nSummary: " + llama_response
|
155 |
|
156 |
-
# Get medicine suggestions
|
157 |
-
|
158 |
-
|
159 |
-
with torch.no_grad():
|
160 |
-
outputs = meditron_llm.pipeline.model.generate(
|
161 |
-
inputs.input_ids,
|
162 |
-
attention_mask=inputs.attention_mask,
|
163 |
-
max_new_tokens=256,
|
164 |
-
temperature=0.7,
|
165 |
-
top_p=0.9,
|
166 |
-
do_sample=True
|
167 |
-
)
|
168 |
-
|
169 |
-
medicine_suggestions = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
170 |
|
171 |
# Format final response
|
172 |
final_response = (
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Model configuration
|
7 |
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
|
|
|
33 |
<|im_start|>assistant
|
34 |
"""
|
35 |
|
36 |
+
# Global variables to store models (will be loaded lazily)
|
37 |
+
llama_model = None
|
38 |
+
llama_tokenizer = None
|
39 |
+
meditron_model = None
|
40 |
+
meditron_tokenizer = None
|
41 |
conversation_turns = 0
|
42 |
patient_data = []
|
43 |
|
44 |
+
def build_llama2_prompt(system_prompt, history, user_input):
|
45 |
+
"""Format the conversation history and user input for Llama-2 chat models."""
|
46 |
+
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
47 |
+
|
48 |
+
# Add conversation history
|
49 |
+
for user_msg, assistant_msg in history:
|
50 |
+
prompt += f"{user_msg} [/INST] {assistant_msg} </s><s>[INST] "
|
51 |
+
|
52 |
+
# Add the current user input
|
53 |
+
prompt += f"{user_input} [/INST] "
|
54 |
+
|
55 |
+
return prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
@spaces.GPU
|
58 |
+
def load_models_if_needed():
|
59 |
+
"""Load models only when GPU is available and only if not already loaded."""
|
60 |
+
global llama_model, llama_tokenizer, meditron_model, meditron_tokenizer
|
61 |
+
|
62 |
+
if llama_model is None:
|
63 |
+
print("Loading Llama-2 model...")
|
64 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
|
65 |
+
llama_model = AutoModelForCausalLM.from_pretrained(
|
66 |
+
LLAMA_MODEL,
|
67 |
+
torch_dtype=torch.float16,
|
68 |
+
device_map="auto"
|
69 |
+
)
|
70 |
+
print("Llama-2 model loaded successfully!")
|
71 |
+
|
72 |
+
if meditron_model is None:
|
73 |
+
print("Loading Meditron model...")
|
74 |
+
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
|
75 |
+
meditron_model = AutoModelForCausalLM.from_pretrained(
|
76 |
+
MEDITRON_MODEL,
|
77 |
+
torch_dtype=torch.float16,
|
78 |
+
device_map="auto"
|
79 |
+
)
|
80 |
+
print("Meditron model loaded successfully!")
|
81 |
|
82 |
+
@spaces.GPU
|
83 |
+
def get_meditron_suggestions(patient_info):
|
84 |
+
"""Use Meditron model to generate medicine and remedy suggestions."""
|
85 |
+
load_models_if_needed() # Ensure models are loaded
|
86 |
+
|
87 |
+
prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
|
88 |
+
inputs = meditron_tokenizer(prompt, return_tensors="pt")
|
89 |
+
|
90 |
+
# Move inputs to the same device as the model
|
91 |
+
if torch.cuda.is_available():
|
92 |
+
inputs = {k: v.to(meditron_model.device) for k, v in inputs.items()}
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
outputs = meditron_model.generate(
|
96 |
+
inputs["input_ids"],
|
97 |
+
attention_mask=inputs["attention_mask"],
|
98 |
+
max_new_tokens=256,
|
99 |
+
temperature=0.7,
|
100 |
+
top_p=0.9,
|
101 |
+
do_sample=True,
|
102 |
+
pad_token_id=meditron_tokenizer.eos_token_id
|
103 |
+
)
|
104 |
+
|
105 |
+
suggestion = meditron_tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
106 |
+
return suggestion
|
107 |
|
108 |
@spaces.GPU
|
109 |
def generate_response(message, history):
|
110 |
+
"""Generate a response using both models."""
|
111 |
global conversation_turns, patient_data
|
112 |
+
|
113 |
+
# Load models if needed
|
114 |
+
load_models_if_needed()
|
115 |
+
|
116 |
+
# Track conversation turns
|
117 |
conversation_turns += 1
|
118 |
|
119 |
+
# Store the entire conversation for reference
|
120 |
patient_data.append(message)
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
# Build the prompt with proper Llama-2 formatting
|
123 |
+
prompt = build_llama2_prompt(SYSTEM_PROMPT, history, message)
|
124 |
|
125 |
+
# Add summarization instruction after 4 turns
|
126 |
+
if conversation_turns >= 4:
|
127 |
+
prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")
|
128 |
|
129 |
+
inputs = llama_tokenizer(prompt, return_tensors="pt")
|
|
|
130 |
|
131 |
+
# Move inputs to the same device as the model
|
132 |
+
if torch.cuda.is_available():
|
133 |
+
inputs = {k: v.to(llama_model.device) for k, v in inputs.items()}
|
134 |
|
135 |
+
# Generate the Llama-2 response
|
136 |
with torch.no_grad():
|
137 |
+
outputs = llama_model.generate(
|
138 |
+
inputs["input_ids"],
|
139 |
+
attention_mask=inputs["attention_mask"],
|
140 |
max_new_tokens=512,
|
141 |
temperature=0.7,
|
142 |
top_p=0.9,
|
|
|
153 |
# Collect full patient conversation
|
154 |
full_patient_info = "\n".join(patient_data) + "\n\nSummary: " + llama_response
|
155 |
|
156 |
+
# Get medicine suggestions
|
157 |
+
medicine_suggestions = get_meditron_suggestions(full_patient_info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
# Format final response
|
160 |
final_response = (
|