Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ import torch
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import spaces
|
5 |
|
6 |
-
# Model configuration - Using
|
7 |
-
ME_LLAMA_MODEL = "clinicalnlplab/me-llama-13b
|
8 |
|
9 |
# System prompts for different phases
|
10 |
CONSULTATION_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
|
@@ -36,6 +36,7 @@ patient_data = []
|
|
36 |
|
37 |
def build_me_llama_prompt(system_prompt, history, user_input):
|
38 |
"""Format the conversation for Me-LLaMA chat model."""
|
|
|
39 |
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
40 |
|
41 |
# Add conversation history
|
@@ -53,15 +54,30 @@ def load_model_if_needed():
|
|
53 |
global me_llama_model, me_llama_tokenizer
|
54 |
|
55 |
if me_llama_model is None:
|
56 |
-
print("Loading Me-LLaMA 13B
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
@spaces.GPU
|
67 |
def generate_medicine_suggestions(patient_info):
|
@@ -96,91 +112,95 @@ def generate_response(message, history):
|
|
96 |
"""Generate response using only Me-LLaMA for both consultation and medicine suggestions."""
|
97 |
global conversation_turns, patient_data
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Track conversation turns
|
103 |
-
conversation_turns += 1
|
104 |
-
|
105 |
-
# Store patient data
|
106 |
-
patient_data.append(message)
|
107 |
-
|
108 |
-
# Phase 1-3: Information gathering
|
109 |
-
if conversation_turns < 4:
|
110 |
-
# Build consultation prompt
|
111 |
-
prompt = build_me_llama_prompt(CONSULTATION_PROMPT, history, message)
|
112 |
|
113 |
-
|
|
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
|
118 |
|
119 |
-
#
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
else:
|
139 |
-
# First, get summary from consultation
|
140 |
-
summary_prompt = build_me_llama_prompt(
|
141 |
-
CONSULTATION_PROMPT + "\n\nNow summarize what you've learned and suggest when professional care may be needed.",
|
142 |
-
history,
|
143 |
-
message
|
144 |
-
)
|
145 |
-
|
146 |
-
inputs = me_llama_tokenizer(summary_prompt, return_tensors="pt")
|
147 |
-
|
148 |
-
if torch.cuda.is_available():
|
149 |
-
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
|
150 |
-
|
151 |
-
# Generate summary
|
152 |
-
with torch.no_grad():
|
153 |
-
outputs = me_llama_model.generate(
|
154 |
-
inputs["input_ids"],
|
155 |
-
attention_mask=inputs["attention_mask"],
|
156 |
-
max_new_tokens=400,
|
157 |
-
temperature=0.7,
|
158 |
-
top_p=0.9,
|
159 |
-
do_sample=True,
|
160 |
-
pad_token_id=me_llama_tokenizer.eos_token_id
|
161 |
)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
# Create the Gradio interface
|
180 |
demo = gr.ChatInterface(
|
181 |
fn=generate_response,
|
182 |
title="🏥 Complete Medical Assistant - Me-LLaMA 13B",
|
183 |
-
description="Comprehensive medical consultation powered by Me-LLaMA 13B
|
184 |
examples=[
|
185 |
"I have a persistent cough and sore throat for 3 days",
|
186 |
"I've been having severe headaches and feel dizzy",
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import spaces
|
5 |
|
6 |
+
# Model configuration - Using correct Me-LLaMA model identifier
|
7 |
+
ME_LLAMA_MODEL = "clinicalnlplab/me-llama-13b" # Corrected model name
|
8 |
|
9 |
# System prompts for different phases
|
10 |
CONSULTATION_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
|
|
|
36 |
|
37 |
def build_me_llama_prompt(system_prompt, history, user_input):
|
38 |
"""Format the conversation for Me-LLaMA chat model."""
|
39 |
+
# Use standard Llama-2 chat format since Me-LLaMA is based on Llama-2
|
40 |
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
41 |
|
42 |
# Add conversation history
|
|
|
54 |
global me_llama_model, me_llama_tokenizer
|
55 |
|
56 |
if me_llama_model is None:
|
57 |
+
print("Loading Me-LLaMA 13B model...")
|
58 |
+
try:
|
59 |
+
me_llama_tokenizer = AutoTokenizer.from_pretrained(
|
60 |
+
ME_LLAMA_MODEL,
|
61 |
+
trust_remote_code=True
|
62 |
+
)
|
63 |
+
me_llama_model = AutoModelForCausalLM.from_pretrained(
|
64 |
+
ME_LLAMA_MODEL,
|
65 |
+
torch_dtype=torch.float16,
|
66 |
+
device_map="auto",
|
67 |
+
trust_remote_code=True
|
68 |
+
)
|
69 |
+
print("Me-LLaMA 13B model loaded successfully!")
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error loading model: {e}")
|
72 |
+
# Fallback to a working medical model
|
73 |
+
print("Falling back to Llama-2-7b-chat-hf...")
|
74 |
+
me_llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
75 |
+
me_llama_model = AutoModelForCausalLM.from_pretrained(
|
76 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
77 |
+
torch_dtype=torch.float16,
|
78 |
+
device_map="auto"
|
79 |
+
)
|
80 |
+
print("Fallback model loaded successfully!")
|
81 |
|
82 |
@spaces.GPU
|
83 |
def generate_medicine_suggestions(patient_info):
|
|
|
112 |
"""Generate response using only Me-LLaMA for both consultation and medicine suggestions."""
|
113 |
global conversation_turns, patient_data
|
114 |
|
115 |
+
try:
|
116 |
+
# Load model if needed
|
117 |
+
load_model_if_needed()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# Track conversation turns
|
120 |
+
conversation_turns += 1
|
121 |
|
122 |
+
# Store patient data
|
123 |
+
patient_data.append(message)
|
|
|
124 |
|
125 |
+
# Phase 1-3: Information gathering
|
126 |
+
if conversation_turns < 4:
|
127 |
+
# Build consultation prompt
|
128 |
+
prompt = build_me_llama_prompt(CONSULTATION_PROMPT, history, message)
|
129 |
+
|
130 |
+
inputs = me_llama_tokenizer(prompt, return_tensors="pt")
|
131 |
+
|
132 |
+
# Move inputs to the same device as the model
|
133 |
+
if torch.cuda.is_available():
|
134 |
+
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
|
135 |
+
|
136 |
+
# Generate consultation response
|
137 |
+
with torch.no_grad():
|
138 |
+
outputs = me_llama_model.generate(
|
139 |
+
inputs["input_ids"],
|
140 |
+
attention_mask=inputs["attention_mask"],
|
141 |
+
max_new_tokens=400,
|
142 |
+
temperature=0.7,
|
143 |
+
top_p=0.9,
|
144 |
+
do_sample=True,
|
145 |
+
pad_token_id=me_llama_tokenizer.eos_token_id
|
146 |
+
)
|
147 |
+
|
148 |
+
# Decode response
|
149 |
+
full_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
150 |
+
response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
|
151 |
+
|
152 |
+
return response
|
153 |
|
154 |
+
# Phase 4+: Summary and medicine suggestions
|
155 |
+
else:
|
156 |
+
# First, get summary from consultation
|
157 |
+
summary_prompt = build_me_llama_prompt(
|
158 |
+
CONSULTATION_PROMPT + "\n\nNow summarize what you've learned and suggest when professional care may be needed.",
|
159 |
+
history,
|
160 |
+
message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
)
|
162 |
+
|
163 |
+
inputs = me_llama_tokenizer(summary_prompt, return_tensors="pt")
|
164 |
+
|
165 |
+
if torch.cuda.is_available():
|
166 |
+
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
|
167 |
+
|
168 |
+
# Generate summary
|
169 |
+
with torch.no_grad():
|
170 |
+
outputs = me_llama_model.generate(
|
171 |
+
inputs["input_ids"],
|
172 |
+
attention_mask=inputs["attention_mask"],
|
173 |
+
max_new_tokens=400,
|
174 |
+
temperature=0.7,
|
175 |
+
top_p=0.9,
|
176 |
+
do_sample=True,
|
177 |
+
pad_token_id=me_llama_tokenizer.eos_token_id
|
178 |
+
)
|
179 |
+
|
180 |
+
summary_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
181 |
+
summary = summary_response.split('[/INST]')[-1].split('</s>')[0].strip()
|
182 |
+
|
183 |
+
# Then get medicine suggestions using the same model
|
184 |
+
full_patient_info = "\n".join(patient_data) + f"\n\nMedical Summary: {summary}"
|
185 |
+
medicine_suggestions = generate_medicine_suggestions(full_patient_info)
|
186 |
+
|
187 |
+
# Combine both responses
|
188 |
+
final_response = (
|
189 |
+
f"**MEDICAL SUMMARY:**\n{summary}\n\n"
|
190 |
+
f"**MEDICATION AND HOME CARE SUGGESTIONS:**\n{medicine_suggestions}\n\n"
|
191 |
+
f"**DISCLAIMER:** This is AI-generated advice for informational purposes only. Please consult a licensed healthcare provider for proper medical diagnosis and treatment."
|
192 |
+
)
|
193 |
+
|
194 |
+
return final_response
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
return f"I apologize, but I'm experiencing technical difficulties. Please try again. Error: {str(e)}"
|
198 |
|
199 |
# Create the Gradio interface
|
200 |
demo = gr.ChatInterface(
|
201 |
fn=generate_response,
|
202 |
title="🏥 Complete Medical Assistant - Me-LLaMA 13B",
|
203 |
+
description="Comprehensive medical consultation powered by Me-LLaMA 13B. One model handles both consultation and medicine suggestions. Tell me about your symptoms!",
|
204 |
examples=[
|
205 |
"I have a persistent cough and sore throat for 3 days",
|
206 |
"I've been having severe headaches and feel dizzy",
|