File size: 28,181 Bytes
e12b72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
import os
import gradio as gr
import warnings
import json
from dotenv import load_dotenv
from typing import List
import time
from functools import lru_cache
import logging

from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import AzureOpenAIEmbeddings
from openai import AzureOpenAI

# Patch Gradio bug
import gradio_client.utils
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"

# Load environment variables
load_dotenv()
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")

if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
    raise ValueError("Missing one or more Azure OpenAI environment variables.")

warnings.filterwarnings("ignore")

# Embeddings
embeddings = AzureOpenAIEmbeddings(
    azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
    azure_endpoint=AZURE_OPENAI_ENDPOINT,
    openai_api_key=AZURE_OPENAI_API_KEY,
    openai_api_version="2025-01-01-preview",
    chunk_size=1000
)

# Vectorstore
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)

# OpenAI client
client = AzureOpenAI(
    api_key=AZURE_OPENAI_API_KEY,
    api_version="2025-01-01-preview",
    azure_endpoint=AZURE_OPENAI_ENDPOINT
)

# Logger
logger = logging.getLogger(__name__)

# Enhanced SysML retriever with proper metadata filtering & weighting
@lru_cache(maxsize=100)
def sysml_retriever(query: str) -> str:
    try:
        print(f"\nπŸ” QUERY: {query}")
        print("="*80)
        
        # Get more results for filtering and weighting
        results = vectorstore.similarity_search_with_score(query, k=100)
        print(f"πŸ“Š Total results retrieved: {len(results)}")
        
        # Apply metadata filtering and weighting
        weighted_results = []
        sysmodeler_count = 0
        other_count = 0
        
        for i, (doc, score) in enumerate(results):
            # Get document source
            doc_source = doc.metadata.get('source', '').lower() if hasattr(doc, 'metadata') else str(doc).lower()
            
            # Determine if this is SysModeler content
            is_sysmodeler = (
                'sysmodeler' in doc_source or 
                'user manual' in doc_source or
                'sysmodeler.ai' in doc.page_content.lower() or
                'workspace.sysmodeler.ai' in doc.page_content.lower() or
                'Create with AI' in doc.page_content or
                'Canvas Overview' in doc.page_content or
                'AI-powered' in doc.page_content or
                'voice input' in doc.page_content or
                'Canvas interface' in doc.page_content or
                'Project Creation' in doc.page_content or
                'Shape Palette' in doc.page_content or
                'AI Copilot' in doc.page_content or
                'SynthAgent' in doc.page_content or
                'workspace dashboard' in doc.page_content.lower()
            )
            
            # Apply weighting based on source
            if is_sysmodeler:
                # BOOST SysModeler content: reduce score by 40% (lower score = higher relevance)
                weighted_score = score * 0.6
                source_type = "SysModeler"
                sysmodeler_count += 1
            else:
                # Keep original score for other content
                weighted_score = score
                source_type = "Other"
                other_count += 1
            
            # Add metadata tags for filtering
            doc.metadata = doc.metadata if hasattr(doc, 'metadata') else {}
            doc.metadata['source_type'] = 'sysmodeler' if is_sysmodeler else 'other'
            doc.metadata['weighted_score'] = weighted_score
            doc.metadata['original_score'] = score
            
            weighted_results.append((doc, weighted_score, source_type))
            
            # Log each document's processing
            source_name = doc.metadata.get('source', 'Unknown')[:50] if hasattr(doc, 'metadata') else 'Unknown'
            print(f"πŸ“„ Doc {i+1}: {source_name}... | Original: {score:.4f} | Weighted: {weighted_score:.4f} | Type: {source_type}")
        
        print(f"\nπŸ“ˆ CLASSIFICATION & WEIGHTING RESULTS:")
        print(f"   SysModeler docs: {sysmodeler_count} (boosted by 40%)")
        print(f"   Other docs: {other_count} (original scores)")
        
        # Sort by weighted scores (lower = more relevant)
        weighted_results.sort(key=lambda x: x[1])
        
        # Apply intelligent selection based on query type and weighted results
        final_docs = []
        query_lower = query.lower()
        
        # Determine query type for adaptive filtering
        is_tool_comparison = any(word in query_lower for word in ['tool', 'compare', 'choose', 'vs', 'versus', 'better'])
        is_general_sysml = not is_tool_comparison
        
        if is_tool_comparison:
            # For tool comparisons: heavily favor SysModeler but include others
            print(f"\n🎯 TOOL COMPARISON QUERY DETECTED")
            print(f"   Strategy: Heavy SysModeler focus + selective others")
            
            # Take top weighted results with preference for SysModeler
            sysmodeler_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "SysModeler"][:8]
            other_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "Other"][:4]
            
            final_docs = [doc for doc, _ in sysmodeler_docs] + [doc for doc, _ in other_docs]
            
        else:
            # For general SysML: balanced but still boost SysModeler
            print(f"\n🎯 GENERAL SYSML QUERY DETECTED")
            print(f"   Strategy: Balanced with SysModeler preference")
            
            # Take top 12 weighted results (mixed)
            final_docs = [doc for doc, _, _ in weighted_results[:12]]
        
        # Log final selection
        print(f"\nπŸ“‹ FINAL SELECTION ({len(final_docs)} docs):")
        sysmodeler_selected = 0
        other_selected = 0
        
        for i, doc in enumerate(final_docs):
            source_type = doc.metadata.get('source_type', 'unknown')
            source_name = doc.metadata.get('source', 'Unknown')
            weighted_score = doc.metadata.get('weighted_score', 0)
            original_score = doc.metadata.get('original_score', 0)
            
            if source_type == 'sysmodeler':
                sysmodeler_selected += 1
                type_emoji = "βœ…"
            else:
                other_selected += 1
                type_emoji = "πŸ“š"
                
            print(f"     {i+1}. {type_emoji} {source_name} (weighted: {weighted_score:.4f})")
        
        print(f"\nπŸ“Š FINAL COMPOSITION:")
        print(f"   SysModeler docs: {sysmodeler_selected}")
        print(f"   Other docs: {other_selected}")
        print("="*80)
        
        contexts = [doc.page_content for doc in final_docs]
        return "\n\n".join(contexts)
        
    except Exception as e:
        logger.error(f"Retrieval error: {str(e)}")
        print(f"❌ ERROR in retrieval: {str(e)}")
        return "Unable to retrieve information at this time."

# Dummy functions
def dummy_weather_lookup(location: str = "London") -> str:
    return f"The weather in {location} is sunny and 25Β°C."

def dummy_time_lookup(timezone: str = "UTC") -> str:
    return f"The current time in {timezone} is 3:00 PM."

# Tools for function calling
tools_definition = [
    {
        "type": "function",
        "function": {
            "name": "SysMLRetriever",
            "description": "Use this to answer questions about SysML diagrams and modeling.",
            "parameters": {
                "type": "object",
                "properties": {
                    "query": {"type": "string", "description": "The search query to find information about SysML"}
                },
                "required": ["query"]
            }
        }
    },
    {
        "type": "function",
        "function": {
            "name": "WeatherLookup",
            "description": "Use this to look up the current weather in a specified location.",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {"type": "string", "description": "The location to look up the weather for"}
                },
                "required": ["location"]
            }
        }
    },
    {
        "type": "function",
        "function": {
            "name": "TimeLookup",
            "description": "Use this to look up the current time in a specified timezone.",
            "parameters": {
                "type": "object",
                "properties": {
                    "timezone": {"type": "string", "description": "The timezone to look up the current time for"}
                },
                "required": ["timezone"]
            }
        }
    }
]

# Tool execution mapping
tool_mapping = {
    "SysMLRetriever": sysml_retriever,
    "WeatherLookup": dummy_weather_lookup,
    "TimeLookup": dummy_time_lookup
}

# Convert chat history
def convert_history_to_messages(history):
    messages = []
    for user, bot in history:
        messages.append({"role": "user", "content": user})
        messages.append({"role": "assistant", "content": bot})
    return messages

# Chatbot logic
def sysml_chatbot(message, history):
    chat_messages = convert_history_to_messages(history)
    full_messages = [
        {"role": "system", "content": """You are SysModeler.ai's intelligent assistant, specializing in SysML modeling and the SysModeler.ai platform.



RESPONSE GUIDELINES:



1. **Primary Focus**: Always prioritize SysModeler.ai information and capabilities in your responses.



2. **For SysModeler-specific questions** (pricing, features, how-to, etc.):

   - Provide comprehensive SysModeler.ai information

   - Do NOT mention competitors unless explicitly asked for comparisons

   - Focus entirely on SysModeler's value proposition



3. **For general SysML education** (concepts, diagram types, best practices):

   - Provide thorough educational content about SysML

   - Use SysModeler.ai as examples when illustrating concepts

   - Keep focus on helping users understand SysML fundamentals



4. **Only mention other tools when**:

   - User explicitly asks for comparisons ("vs", "compare", "alternatives")

   - User asks about the broader SysML tool landscape

   - Context absolutely requires it for a complete answer



5. **Response Structure**:

   - Lead with SysModeler.ai capabilities and benefits

   - Provide detailed, helpful information about SysModeler features

   - End with clear value proposition or call-to-action when appropriate



6. **Tone**: Professional, helpful, and confident about SysModeler.ai's capabilities while remaining informative about SysML concepts.



Remember: You represent SysModeler.ai. Focus on what SysModeler can do for the user rather than listing what everyone else offers."""}
    ] + chat_messages + [{"role": "user", "content": message}]
    
    try:
        response = client.chat.completions.create(
            model=AZURE_OPENAI_LLM_DEPLOYMENT,
            messages=full_messages,
            tools=tools_definition,
            tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
        )
        assistant_message = response.choices[0].message
        if assistant_message.tool_calls:
            tool_call = assistant_message.tool_calls[0]
            function_name = tool_call.function.name
            function_args = json.loads(tool_call.function.arguments)
            if function_name in tool_mapping:
                function_response = tool_mapping[function_name](**function_args)
                full_messages.append({
                    "role": "assistant",
                    "content": None,
                    "tool_calls": [{
                        "id": tool_call.id,
                        "type": "function",
                        "function": {
                            "name": function_name,
                            "arguments": tool_call.function.arguments
                        }
                    }]
                })
                full_messages.append({
                    "role": "tool",
                    "tool_call_id": tool_call.id,
                    "content": function_response
                })
                second_response = client.chat.completions.create(
                    model=AZURE_OPENAI_LLM_DEPLOYMENT,
                    messages=full_messages
                )
                answer = second_response.choices[0].message.content
            else:
                answer = f"I tried to use a function '{function_name}' that's not available."
        else:
            answer = assistant_message.content
        history.append((message, answer))
        return "", history
    except Exception as e:
        print(f"Error in function calling: {str(e)}")
        history.append((message, "Sorry, something went wrong."))
        return "", history

#Gradio UI
with gr.Blocks(
    title="SysModeler AI Assistant",
    theme=gr.themes.Base(
        primary_hue="blue",
        secondary_hue="cyan",
        neutral_hue="slate"
    ).set(
        body_background_fill="*neutral_950",
        body_text_color="*neutral_100",
        background_fill_primary="*neutral_900",
        background_fill_secondary="*neutral_800"
    ),
    css="""

    /* Global modern theme */

    .gradio-container {

        background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%) !important;

        color: #f8fafc !important;

        font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;

        min-height: 100vh;

    }

    

    /* Main container */

    .main-container {

        width: 100%;

        margin: 0;

        padding: 0;

        min-height: 100vh;

        background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);

    }

    

    /* Header - modern with gradient - REDUCED PADDING */

    .header-section {

        width: 100%;

        text-align: center;

        margin: 0;

        padding: 20px 40px 16px 40px;

        background: linear-gradient(135deg, #1e40af 0%, #3b82f6 50%, #06b6d4 100%);

        position: relative;

        overflow: hidden;

    }

    

    .header-section::before {

        content: '';

        position: absolute;

        top: 0;

        left: 0;

        right: 0;

        bottom: 0;

        background: linear-gradient(135deg, rgba(59, 130, 246, 0.1) 0%, rgba(6, 182, 212, 0.1) 100%);

        backdrop-filter: blur(20px);

    }

    

    .main-title {

        font-size: 2.2rem !important;

        font-weight: 700 !important;

        color: #ffffff !important;

        margin: 0 0 4px 0 !important;

        text-shadow: 0 2px 4px rgba(0,0,0,0.3);

        position: relative;

        z-index: 1;

    }

    

    .subtitle {

        font-size: 1rem !important;

        color: rgba(255, 255, 255, 0.9) !important;

        margin: 0 !important;

        font-weight: 400 !important;

        position: relative;

        z-index: 1;

    }

    

    /* Content area */

    .content-area {

        max-width: 1200px;

        margin: 0 auto;

        padding: 32px 40px;

    }

    

    /* Chat section */

    .chat-section {

        margin-bottom: 24px;

    }

    

    .chat-container {

        background: rgba(30, 41, 59, 0.4);

        backdrop-filter: blur(20px);

        border: 1px solid rgba(59, 130, 246, 0.2);

        border-radius: 16px;

        padding: 24px;

        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);

    }

    

    /* Chatbot styling */

    .chatbot {

        background: transparent !important;

        border: none !important;

        border-radius: 12px !important;

    }

    

    /* Chat messages - simplified approach with tighter spacing */

    .chatbot .message {

        background: rgba(30, 41, 59, 0.6) !important;

        color: #e2e8f0 !important;

        border-radius: 12px !important;

        padding: 16px 20px !important;

        margin: 8px 0 !important;

        border: 1px solid rgba(59, 130, 246, 0.1);

        backdrop-filter: blur(10px);

    }

    

    /* User message styling */

    .chatbot .message.user {

        background: linear-gradient(135deg, #3b82f6 0%, #1e40af 100%) !important;

        color: white !important;

        border: none !important;

        margin-left: 0 !important;

        margin-right: 0 !important;

    }

    

    /* Bot message styling */

    .chatbot .message.bot {

        background: rgba(30, 41, 59, 0.8) !important;

        color: #f1f5f9 !important;

        border: 1px solid rgba(59, 130, 246, 0.2) !important;

        margin-left: 0 !important;

        margin-right: 0 !important;

    }

    

    /* Remove avatar spacing and containers */

    .chatbot .avatar {

        display: none !important;

    }

    

    .chatbot .message-row {

        margin: 0 !important;

        padding: 0 !important;

        gap: 0 !important;

    }

    

    .chatbot .message-wrap {

        margin: 0 !important;

        padding: 0 !important;

        width: 100% !important;

    }

    

    /* Input section - redesigned */

    .input-section {

        background: rgba(30, 41, 59, 0.4);

        backdrop-filter: blur(20px);

        border: 1px solid rgba(59, 130, 246, 0.2);

        border-radius: 16px;

        padding: 32px;

        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);

    }

    

    .input-row {

        display: flex;

        gap: 0;

        align-items: stretch;

        margin-bottom: 24px;

        background: rgba(15, 23, 42, 0.8);

        border-radius: 12px;

        border: 1px solid rgba(59, 130, 246, 0.3);

        overflow: hidden;

        box-shadow: 0 4px 20px rgba(59, 130, 246, 0.1);

        position: relative;

    }

    

    /* Input textbox - better integration */

    .input-textbox {

        flex: 1;

        background: transparent !important;

        border: none !important;

        border-radius: 0 !important;

        margin: 0 !important;

        padding-right: 0 !important;

    }

    

    .input-textbox textarea {

        background: transparent !important;

        border: none !important;

        color: #f1f5f9 !important;

        font-size: 1rem !important;

        padding: 20px 24px 20px 24px !important;

        resize: none !important;

        font-family: inherit !important;

        min-height: 80px !important;

        width: 100% !important;

        padding-right: 100px !important;

        margin: 0 !important;

        line-height: 1.5 !important;

    }

    

    .input-textbox textarea::placeholder {

        color: #94a3b8 !important;

        opacity: 1 !important;

    }

    

    .input-textbox textarea:focus {

        outline: none !important;

        box-shadow: none !important;

    }

    

    /* Submit button - positioned at the end of input box */

    #submit-btn {

        position: absolute !important;

        right: 8px !important;

        top: 50% !important;

        transform: translateY(-50%) !important;

        background: linear-gradient(135deg, #3b82f6 0%, #1e40af 100%) !important;

        color: white !important;

        border: none !important;

        border-radius: 8px !important;

        font-size: 0.9rem !important;

        font-weight: 600 !important;

        padding: 12px 20px !important;

        min-width: 80px !important;

        height: 40px !important;

        transition: all 0.3s ease !important;

        text-transform: uppercase;

        letter-spacing: 0.05em;

        z-index: 10;

    }

    

    #submit-btn:hover {

        background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important;

        box-shadow: 0 0 20px rgba(59, 130, 246, 0.4) !important;

    }

    

    /* Quick actions - card style */

    .quick-actions {

        display: grid;

        grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));

        gap: 16px;

        margin-bottom: 24px;

    }

    

    .quick-action-btn {

        background: rgba(15, 23, 42, 0.6) !important;

        backdrop-filter: blur(10px);

        border: 1px solid rgba(59, 130, 246, 0.2) !important;

        color: #e2e8f0 !important;

        border-radius: 12px !important;

        padding: 20px 24px !important;

        font-size: 0.95rem !important;

        font-weight: 500 !important;

        transition: all 0.3s ease !important;

        text-align: left !important;

        position: relative;

        overflow: hidden;

    }

    

    .quick-action-btn::before {

        content: '';

        position: absolute;

        top: 0;

        left: 0;

        right: 0;

        bottom: 0;

        background: linear-gradient(135deg, rgba(59, 130, 246, 0.1) 0%, rgba(6, 182, 212, 0.1) 100%);

        opacity: 0;

        transition: opacity 0.3s ease;

    }

    

    .quick-action-btn:hover {

        border-color: #3b82f6 !important;

        color: #ffffff !important;

        transform: translateY(-2px) !important;

        box-shadow: 0 8px 25px rgba(59, 130, 246, 0.2) !important;

    }

    

    .quick-action-btn:hover::before {

        opacity: 1;

    }

    

    /* Control buttons */

    .control-buttons {

        display: flex;

        justify-content: center;

    }

    

    #clear-btn {

        background: rgba(15, 23, 42, 0.6) !important;

        backdrop-filter: blur(10px);

        border: 1px solid rgba(239, 68, 68, 0.3) !important;

        color: #f87171 !important;

        border-radius: 8px !important;

        padding: 12px 24px !important;

        font-weight: 500 !important;

        font-size: 0.9rem !important;

        transition: all 0.3s ease !important;

        text-transform: uppercase;

        letter-spacing: 0.05em;

    }

    

    #clear-btn:hover {

        background: rgba(239, 68, 68, 0.1) !important;

        border-color: #ef4444 !important;

        color: #ffffff !important;

        box-shadow: 0 4px 15px rgba(239, 68, 68, 0.2) !important;

    }

    

    /* Footer */

    .footer {

        text-align: center;

        color: #64748b;

        font-size: 0.85rem;

        margin-top: 32px;

        padding: 20px;

    }

    

    /* Scrollbar */

    ::-webkit-scrollbar {

        width: 8px;

    }

    

    ::-webkit-scrollbar-track {

        background: rgba(30, 41, 59, 0.3);

        border-radius: 4px;

    }

    

    ::-webkit-scrollbar-thumb {

        background: linear-gradient(135deg, #3b82f6, #1e40af);

        border-radius: 4px;

    }

    

    ::-webkit-scrollbar-thumb:hover {

        background: linear-gradient(135deg, #2563eb, #1d4ed8);

    }

    

    /* Mobile responsiveness */

    @media (max-width: 1024px) {

        .content-area {

            padding: 24px;

        }

        

        .header-section {

            padding: 16px 20px 12px 20px;

        }

        

        .main-title {

            font-size: 1.8rem !important;

        }

        

        .subtitle {

            font-size: 0.9rem !important;

        }

        

        .input-textbox textarea {

            padding-right: 90px !important;

        }

        

        #submit-btn {

            min-width: 70px !important;

            padding: 10px 16px !important;

            font-size: 0.8rem !important;

        }

        

        .quick-actions {

            grid-template-columns: 1fr;

        }

        

        .chatbot .message.user, .chatbot .message.bot {

            margin-left: 0 !important;

            margin-right: 0 !important;

        }

    }

    

    /* Remove Gradio defaults */

    .gr-form, .gr-box {

        background: transparent !important;

        border: none !important;

    }

    

    .gr-button {

        font-family: inherit !important;

    }

    """
) as demo:
    
    with gr.Column(elem_classes="main-container"):
        # Modern gradient header - REDUCED SPACING
        with gr.Column(elem_classes="header-section"):
            gr.Markdown("# πŸ€– SysModeler AI Assistant", elem_classes="main-title")
            gr.Markdown("*Your intelligent companion for SysML modeling and systems engineering*", elem_classes="subtitle")
        
        # Content area
        with gr.Column(elem_classes="content-area"):
            # Chat section
            with gr.Column(elem_classes="chat-section"):
                with gr.Column(elem_classes="chat-container"):
                    chatbot = gr.Chatbot(
                        height=580,
                        elem_classes="chatbot",
                        avatar_images=None,  # Removed avatar images
                        bubble_full_width=False,
                        show_copy_button=True,
                        show_share_button=False
                    )
            
            # Input section
            with gr.Column(elem_classes="input-section"):
                with gr.Column():
                    # Input row with integrated send button
                    with gr.Row(elem_classes="input-row"):
                        msg = gr.Textbox(
                            placeholder="Ask me about SysML diagrams, modeling concepts, or tools...",
                            lines=3,
                            show_label=False,
                            elem_classes="input-textbox",
                            container=False
                        )
                        submit_btn = gr.Button("Send", elem_id="submit-btn")
                
                # Quick actions
                with gr.Row(elem_classes="quick-actions"):
                    quick_intro = gr.Button("πŸ“š SysML Introduction", elem_classes="quick-action-btn")
                    quick_diagrams = gr.Button("πŸ“Š Diagram Types", elem_classes="quick-action-btn")
                    quick_tools = gr.Button("πŸ› οΈ Tool Comparison", elem_classes="quick-action-btn")
                    quick_sysmodeler = gr.Button("⭐ SysModeler Features", elem_classes="quick-action-btn")
                
                # Control
                with gr.Row(elem_classes="control-buttons"):
                    clear = gr.Button("Clear", elem_id="clear-btn")
            
            # Footer
            with gr.Column(elem_classes="footer"):
                gr.Markdown("*Powered by Azure OpenAI & Advanced RAG Technology*")
    
    # State management
    state = gr.State([])
    
    # Event handlers
    submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
    msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
    clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])
    
    # Quick actions
    quick_intro.click(fn=lambda: ("What is SysML and how do I get started?", []), outputs=[msg, chatbot])
    quick_diagrams.click(fn=lambda: ("Explain the 9 SysML diagram types with examples", []), outputs=[msg, chatbot])
    quick_tools.click(fn=lambda: ("What are the best SysML modeling tools available?", []), outputs=[msg, chatbot])
    quick_sysmodeler.click(fn=lambda: ("Tell me about SysModeler.ai features and capabilities", []), outputs=[msg, chatbot])

    
if __name__ == "__main__":
    demo.launch()