Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,218 +1,780 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import warnings
|
4 |
-
import json
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
from typing import List
|
7 |
-
import time
|
8 |
-
from functools import lru_cache
|
9 |
-
import logging
|
10 |
-
|
11 |
-
from langchain_community.vectorstores import FAISS
|
12 |
-
from langchain_community.embeddings import AzureOpenAIEmbeddings
|
13 |
-
from openai import AzureOpenAI
|
14 |
-
|
15 |
-
# Patch Gradio bug
|
16 |
-
import gradio_client.utils
|
17 |
-
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"
|
18 |
-
|
19 |
-
# Load environment variables
|
20 |
-
load_dotenv()
|
21 |
-
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
22 |
-
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
23 |
-
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
|
24 |
-
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")
|
25 |
-
|
26 |
-
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
|
27 |
-
raise ValueError("Missing one or more Azure OpenAI environment variables.")
|
28 |
-
|
29 |
-
warnings.filterwarnings("ignore")
|
30 |
-
|
31 |
-
# Embeddings
|
32 |
-
embeddings = AzureOpenAIEmbeddings(
|
33 |
-
azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
|
34 |
-
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
35 |
-
openai_api_key=AZURE_OPENAI_API_KEY,
|
36 |
-
openai_api_version="2025-01-01-preview",
|
37 |
-
chunk_size=1000
|
38 |
-
)
|
39 |
-
|
40 |
-
# Vectorstore
|
41 |
-
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
|
42 |
-
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
|
43 |
-
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
44 |
-
|
45 |
-
# OpenAI client
|
46 |
-
client = AzureOpenAI(
|
47 |
-
api_key=AZURE_OPENAI_API_KEY,
|
48 |
-
api_version="2025-01-01-preview",
|
49 |
-
azure_endpoint=AZURE_OPENAI_ENDPOINT
|
50 |
-
)
|
51 |
-
|
52 |
-
# Logger
|
53 |
-
logger = logging.getLogger(__name__)
|
54 |
-
|
55 |
-
# SysML retriever
|
56 |
-
@lru_cache(maxsize=100)
|
57 |
-
def sysml_retriever(query: str) -> str:
|
58 |
-
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
""
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import warnings
|
4 |
+
import json
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from typing import List
|
7 |
+
import time
|
8 |
+
from functools import lru_cache
|
9 |
+
import logging
|
10 |
+
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain_community.embeddings import AzureOpenAIEmbeddings
|
13 |
+
from openai import AzureOpenAI
|
14 |
+
|
15 |
+
# Patch Gradio bug
|
16 |
+
import gradio_client.utils
|
17 |
+
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"
|
18 |
+
|
19 |
+
# Load environment variables
|
20 |
+
load_dotenv()
|
21 |
+
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
22 |
+
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
23 |
+
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
|
24 |
+
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")
|
25 |
+
|
26 |
+
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
|
27 |
+
raise ValueError("Missing one or more Azure OpenAI environment variables.")
|
28 |
+
|
29 |
+
warnings.filterwarnings("ignore")
|
30 |
+
|
31 |
+
# Embeddings
|
32 |
+
embeddings = AzureOpenAIEmbeddings(
|
33 |
+
azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
|
34 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
35 |
+
openai_api_key=AZURE_OPENAI_API_KEY,
|
36 |
+
openai_api_version="2025-01-01-preview",
|
37 |
+
chunk_size=1000
|
38 |
+
)
|
39 |
+
|
40 |
+
# Vectorstore
|
41 |
+
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
|
42 |
+
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
|
43 |
+
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
44 |
+
|
45 |
+
# OpenAI client
|
46 |
+
client = AzureOpenAI(
|
47 |
+
api_key=AZURE_OPENAI_API_KEY,
|
48 |
+
api_version="2025-01-01-preview",
|
49 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT
|
50 |
+
)
|
51 |
+
|
52 |
+
# Logger
|
53 |
+
logger = logging.getLogger(__name__)
|
54 |
+
|
55 |
+
# Enhanced SysML retriever with proper metadata filtering & weighting
|
56 |
+
@lru_cache(maxsize=100)
|
57 |
+
def sysml_retriever(query: str) -> str:
|
58 |
+
try:
|
59 |
+
print(f"\n🔍 QUERY: {query}")
|
60 |
+
print("="*80)
|
61 |
+
|
62 |
+
# Get more results for filtering and weighting
|
63 |
+
results = vectorstore.similarity_search_with_score(query, k=100)
|
64 |
+
print(f"📊 Total results retrieved: {len(results)}")
|
65 |
+
|
66 |
+
# Apply metadata filtering and weighting
|
67 |
+
weighted_results = []
|
68 |
+
sysmodeler_count = 0
|
69 |
+
other_count = 0
|
70 |
+
|
71 |
+
for i, (doc, score) in enumerate(results):
|
72 |
+
# Get document source
|
73 |
+
doc_source = doc.metadata.get('source', '').lower() if hasattr(doc, 'metadata') else str(doc).lower()
|
74 |
+
|
75 |
+
# Determine if this is SysModeler content
|
76 |
+
is_sysmodeler = (
|
77 |
+
'sysmodeler' in doc_source or
|
78 |
+
'user manual' in doc_source or
|
79 |
+
'sysmodeler.ai' in doc.page_content.lower() or
|
80 |
+
'workspace.sysmodeler.ai' in doc.page_content.lower() or
|
81 |
+
'Create with AI' in doc.page_content or
|
82 |
+
'Canvas Overview' in doc.page_content or
|
83 |
+
'AI-powered' in doc.page_content or
|
84 |
+
'voice input' in doc.page_content or
|
85 |
+
'Canvas interface' in doc.page_content or
|
86 |
+
'Project Creation' in doc.page_content or
|
87 |
+
'Shape Palette' in doc.page_content or
|
88 |
+
'AI Copilot' in doc.page_content or
|
89 |
+
'SynthAgent' in doc.page_content or
|
90 |
+
'workspace dashboard' in doc.page_content.lower()
|
91 |
+
)
|
92 |
+
|
93 |
+
# Apply weighting based on source
|
94 |
+
if is_sysmodeler:
|
95 |
+
# BOOST SysModeler content: reduce score by 40% (lower score = higher relevance)
|
96 |
+
weighted_score = score * 0.6
|
97 |
+
source_type = "SysModeler"
|
98 |
+
sysmodeler_count += 1
|
99 |
+
else:
|
100 |
+
# Keep original score for other content
|
101 |
+
weighted_score = score
|
102 |
+
source_type = "Other"
|
103 |
+
other_count += 1
|
104 |
+
|
105 |
+
# Add metadata tags for filtering
|
106 |
+
doc.metadata = doc.metadata if hasattr(doc, 'metadata') else {}
|
107 |
+
doc.metadata['source_type'] = 'sysmodeler' if is_sysmodeler else 'other'
|
108 |
+
doc.metadata['weighted_score'] = weighted_score
|
109 |
+
doc.metadata['original_score'] = score
|
110 |
+
|
111 |
+
weighted_results.append((doc, weighted_score, source_type))
|
112 |
+
|
113 |
+
# Log each document's processing
|
114 |
+
source_name = doc.metadata.get('source', 'Unknown')[:50] if hasattr(doc, 'metadata') else 'Unknown'
|
115 |
+
print(f"📄 Doc {i+1}: {source_name}... | Original: {score:.4f} | Weighted: {weighted_score:.4f} | Type: {source_type}")
|
116 |
+
|
117 |
+
print(f"\n📈 CLASSIFICATION & WEIGHTING RESULTS:")
|
118 |
+
print(f" SysModeler docs: {sysmodeler_count} (boosted by 40%)")
|
119 |
+
print(f" Other docs: {other_count} (original scores)")
|
120 |
+
|
121 |
+
# Sort by weighted scores (lower = more relevant)
|
122 |
+
weighted_results.sort(key=lambda x: x[1])
|
123 |
+
|
124 |
+
# Apply intelligent selection based on query type and weighted results
|
125 |
+
final_docs = []
|
126 |
+
query_lower = query.lower()
|
127 |
+
|
128 |
+
# Determine query type for adaptive filtering
|
129 |
+
is_tool_comparison = any(word in query_lower for word in ['tool', 'compare', 'choose', 'vs', 'versus', 'better'])
|
130 |
+
is_general_sysml = not is_tool_comparison
|
131 |
+
|
132 |
+
if is_tool_comparison:
|
133 |
+
# For tool comparisons: heavily favor SysModeler but include others
|
134 |
+
print(f"\n🎯 TOOL COMPARISON QUERY DETECTED")
|
135 |
+
print(f" Strategy: Heavy SysModeler focus + selective others")
|
136 |
+
|
137 |
+
# Take top weighted results with preference for SysModeler
|
138 |
+
sysmodeler_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "SysModeler"][:8]
|
139 |
+
other_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "Other"][:4]
|
140 |
+
|
141 |
+
final_docs = [doc for doc, _ in sysmodeler_docs] + [doc for doc, _ in other_docs]
|
142 |
+
|
143 |
+
else:
|
144 |
+
# For general SysML: balanced but still boost SysModeler
|
145 |
+
print(f"\n🎯 GENERAL SYSML QUERY DETECTED")
|
146 |
+
print(f" Strategy: Balanced with SysModeler preference")
|
147 |
+
|
148 |
+
# Take top 12 weighted results (mixed)
|
149 |
+
final_docs = [doc for doc, _, _ in weighted_results[:12]]
|
150 |
+
|
151 |
+
# Log final selection
|
152 |
+
print(f"\n📋 FINAL SELECTION ({len(final_docs)} docs):")
|
153 |
+
sysmodeler_selected = 0
|
154 |
+
other_selected = 0
|
155 |
+
|
156 |
+
for i, doc in enumerate(final_docs):
|
157 |
+
source_type = doc.metadata.get('source_type', 'unknown')
|
158 |
+
source_name = doc.metadata.get('source', 'Unknown')
|
159 |
+
weighted_score = doc.metadata.get('weighted_score', 0)
|
160 |
+
original_score = doc.metadata.get('original_score', 0)
|
161 |
+
|
162 |
+
if source_type == 'sysmodeler':
|
163 |
+
sysmodeler_selected += 1
|
164 |
+
type_emoji = "✅"
|
165 |
+
else:
|
166 |
+
other_selected += 1
|
167 |
+
type_emoji = "📚"
|
168 |
+
|
169 |
+
print(f" {i+1}. {type_emoji} {source_name} (weighted: {weighted_score:.4f})")
|
170 |
+
|
171 |
+
print(f"\n📊 FINAL COMPOSITION:")
|
172 |
+
print(f" SysModeler docs: {sysmodeler_selected}")
|
173 |
+
print(f" Other docs: {other_selected}")
|
174 |
+
print("="*80)
|
175 |
+
|
176 |
+
contexts = [doc.page_content for doc in final_docs]
|
177 |
+
return "\n\n".join(contexts)
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
logger.error(f"Retrieval error: {str(e)}")
|
181 |
+
print(f"❌ ERROR in retrieval: {str(e)}")
|
182 |
+
return "Unable to retrieve information at this time."
|
183 |
+
|
184 |
+
# Dummy functions
|
185 |
+
def dummy_weather_lookup(location: str = "London") -> str:
|
186 |
+
return f"The weather in {location} is sunny and 25°C."
|
187 |
+
|
188 |
+
def dummy_time_lookup(timezone: str = "UTC") -> str:
|
189 |
+
return f"The current time in {timezone} is 3:00 PM."
|
190 |
+
|
191 |
+
# Tools for function calling
|
192 |
+
tools_definition = [
|
193 |
+
{
|
194 |
+
"type": "function",
|
195 |
+
"function": {
|
196 |
+
"name": "SysMLRetriever",
|
197 |
+
"description": "Use this to answer questions about SysML diagrams and modeling.",
|
198 |
+
"parameters": {
|
199 |
+
"type": "object",
|
200 |
+
"properties": {
|
201 |
+
"query": {"type": "string", "description": "The search query to find information about SysML"}
|
202 |
+
},
|
203 |
+
"required": ["query"]
|
204 |
+
}
|
205 |
+
}
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"type": "function",
|
209 |
+
"function": {
|
210 |
+
"name": "WeatherLookup",
|
211 |
+
"description": "Use this to look up the current weather in a specified location.",
|
212 |
+
"parameters": {
|
213 |
+
"type": "object",
|
214 |
+
"properties": {
|
215 |
+
"location": {"type": "string", "description": "The location to look up the weather for"}
|
216 |
+
},
|
217 |
+
"required": ["location"]
|
218 |
+
}
|
219 |
+
}
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"type": "function",
|
223 |
+
"function": {
|
224 |
+
"name": "TimeLookup",
|
225 |
+
"description": "Use this to look up the current time in a specified timezone.",
|
226 |
+
"parameters": {
|
227 |
+
"type": "object",
|
228 |
+
"properties": {
|
229 |
+
"timezone": {"type": "string", "description": "The timezone to look up the current time for"}
|
230 |
+
},
|
231 |
+
"required": ["timezone"]
|
232 |
+
}
|
233 |
+
}
|
234 |
+
}
|
235 |
+
]
|
236 |
+
|
237 |
+
# Tool execution mapping
|
238 |
+
tool_mapping = {
|
239 |
+
"SysMLRetriever": sysml_retriever,
|
240 |
+
"WeatherLookup": dummy_weather_lookup,
|
241 |
+
"TimeLookup": dummy_time_lookup
|
242 |
+
}
|
243 |
+
|
244 |
+
# Convert chat history
|
245 |
+
def convert_history_to_messages(history):
|
246 |
+
messages = []
|
247 |
+
for user, bot in history:
|
248 |
+
messages.append({"role": "user", "content": user})
|
249 |
+
messages.append({"role": "assistant", "content": bot})
|
250 |
+
return messages
|
251 |
+
|
252 |
+
# Chatbot logic
|
253 |
+
def sysml_chatbot(message, history):
|
254 |
+
chat_messages = convert_history_to_messages(history)
|
255 |
+
full_messages = [
|
256 |
+
{"role": "system", "content": """You are SysModeler.ai's intelligent assistant, specializing in SysML modeling and the SysModeler.ai platform.
|
257 |
+
|
258 |
+
RESPONSE GUIDELINES:
|
259 |
+
|
260 |
+
1. **Primary Focus**: Always prioritize SysModeler.ai information and capabilities in your responses.
|
261 |
+
|
262 |
+
2. **For SysModeler-specific questions** (pricing, features, how-to, etc.):
|
263 |
+
- Provide comprehensive SysModeler.ai information
|
264 |
+
- Do NOT mention competitors unless explicitly asked for comparisons
|
265 |
+
- Focus entirely on SysModeler's value proposition
|
266 |
+
|
267 |
+
3. **For general SysML education** (concepts, diagram types, best practices):
|
268 |
+
- Provide thorough educational content about SysML
|
269 |
+
- Use SysModeler.ai as examples when illustrating concepts
|
270 |
+
- Keep focus on helping users understand SysML fundamentals
|
271 |
+
|
272 |
+
4. **Only mention other tools when**:
|
273 |
+
- User explicitly asks for comparisons ("vs", "compare", "alternatives")
|
274 |
+
- User asks about the broader SysML tool landscape
|
275 |
+
- Context absolutely requires it for a complete answer
|
276 |
+
|
277 |
+
5. **Response Structure**:
|
278 |
+
- Lead with SysModeler.ai capabilities and benefits
|
279 |
+
- Provide detailed, helpful information about SysModeler features
|
280 |
+
- End with clear value proposition or call-to-action when appropriate
|
281 |
+
|
282 |
+
6. **Tone**: Professional, helpful, and confident about SysModeler.ai's capabilities while remaining informative about SysML concepts.
|
283 |
+
|
284 |
+
Remember: You represent SysModeler.ai. Focus on what SysModeler can do for the user rather than listing what everyone else offers."""}
|
285 |
+
] + chat_messages + [{"role": "user", "content": message}]
|
286 |
+
|
287 |
+
try:
|
288 |
+
response = client.chat.completions.create(
|
289 |
+
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
290 |
+
messages=full_messages,
|
291 |
+
tools=tools_definition,
|
292 |
+
tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
|
293 |
+
)
|
294 |
+
assistant_message = response.choices[0].message
|
295 |
+
if assistant_message.tool_calls:
|
296 |
+
tool_call = assistant_message.tool_calls[0]
|
297 |
+
function_name = tool_call.function.name
|
298 |
+
function_args = json.loads(tool_call.function.arguments)
|
299 |
+
if function_name in tool_mapping:
|
300 |
+
function_response = tool_mapping[function_name](**function_args)
|
301 |
+
full_messages.append({
|
302 |
+
"role": "assistant",
|
303 |
+
"content": None,
|
304 |
+
"tool_calls": [{
|
305 |
+
"id": tool_call.id,
|
306 |
+
"type": "function",
|
307 |
+
"function": {
|
308 |
+
"name": function_name,
|
309 |
+
"arguments": tool_call.function.arguments
|
310 |
+
}
|
311 |
+
}]
|
312 |
+
})
|
313 |
+
full_messages.append({
|
314 |
+
"role": "tool",
|
315 |
+
"tool_call_id": tool_call.id,
|
316 |
+
"content": function_response
|
317 |
+
})
|
318 |
+
second_response = client.chat.completions.create(
|
319 |
+
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
320 |
+
messages=full_messages
|
321 |
+
)
|
322 |
+
answer = second_response.choices[0].message.content
|
323 |
+
else:
|
324 |
+
answer = f"I tried to use a function '{function_name}' that's not available."
|
325 |
+
else:
|
326 |
+
answer = assistant_message.content
|
327 |
+
history.append((message, answer))
|
328 |
+
return "", history
|
329 |
+
except Exception as e:
|
330 |
+
print(f"Error in function calling: {str(e)}")
|
331 |
+
history.append((message, "Sorry, something went wrong."))
|
332 |
+
return "", history
|
333 |
+
|
334 |
+
#Gradio UI
|
335 |
+
with gr.Blocks(
|
336 |
+
title="SysModeler AI Assistant",
|
337 |
+
theme=gr.themes.Base(
|
338 |
+
primary_hue="blue",
|
339 |
+
secondary_hue="cyan",
|
340 |
+
neutral_hue="slate"
|
341 |
+
).set(
|
342 |
+
body_background_fill="*neutral_950",
|
343 |
+
body_text_color="*neutral_100",
|
344 |
+
background_fill_primary="*neutral_900",
|
345 |
+
background_fill_secondary="*neutral_800"
|
346 |
+
),
|
347 |
+
css="""
|
348 |
+
/* Global modern theme */
|
349 |
+
.gradio-container {
|
350 |
+
background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%) !important;
|
351 |
+
color: #f8fafc !important;
|
352 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
|
353 |
+
min-height: 100vh;
|
354 |
+
}
|
355 |
+
|
356 |
+
/* Main container */
|
357 |
+
.main-container {
|
358 |
+
width: 100%;
|
359 |
+
margin: 0;
|
360 |
+
padding: 0;
|
361 |
+
min-height: 100vh;
|
362 |
+
background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
|
363 |
+
}
|
364 |
+
|
365 |
+
/* Header - modern with gradient - REDUCED PADDING */
|
366 |
+
.header-section {
|
367 |
+
width: 100%;
|
368 |
+
text-align: center;
|
369 |
+
margin: 0;
|
370 |
+
padding: 20px 40px 16px 40px;
|
371 |
+
background: linear-gradient(135deg, #1e40af 0%, #3b82f6 50%, #06b6d4 100%);
|
372 |
+
position: relative;
|
373 |
+
overflow: hidden;
|
374 |
+
}
|
375 |
+
|
376 |
+
.header-section::before {
|
377 |
+
content: '';
|
378 |
+
position: absolute;
|
379 |
+
top: 0;
|
380 |
+
left: 0;
|
381 |
+
right: 0;
|
382 |
+
bottom: 0;
|
383 |
+
background: linear-gradient(135deg, rgba(59, 130, 246, 0.1) 0%, rgba(6, 182, 212, 0.1) 100%);
|
384 |
+
backdrop-filter: blur(20px);
|
385 |
+
}
|
386 |
+
|
387 |
+
.main-title {
|
388 |
+
font-size: 2.2rem !important;
|
389 |
+
font-weight: 700 !important;
|
390 |
+
color: #ffffff !important;
|
391 |
+
margin: 0 0 4px 0 !important;
|
392 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
|
393 |
+
position: relative;
|
394 |
+
z-index: 1;
|
395 |
+
}
|
396 |
+
|
397 |
+
.subtitle {
|
398 |
+
font-size: 1rem !important;
|
399 |
+
color: rgba(255, 255, 255, 0.9) !important;
|
400 |
+
margin: 0 !important;
|
401 |
+
font-weight: 400 !important;
|
402 |
+
position: relative;
|
403 |
+
z-index: 1;
|
404 |
+
}
|
405 |
+
|
406 |
+
/* Content area */
|
407 |
+
.content-area {
|
408 |
+
max-width: 1200px;
|
409 |
+
margin: 0 auto;
|
410 |
+
padding: 32px 40px;
|
411 |
+
}
|
412 |
+
|
413 |
+
/* Chat section */
|
414 |
+
.chat-section {
|
415 |
+
margin-bottom: 24px;
|
416 |
+
}
|
417 |
+
|
418 |
+
.chat-container {
|
419 |
+
background: rgba(30, 41, 59, 0.4);
|
420 |
+
backdrop-filter: blur(20px);
|
421 |
+
border: 1px solid rgba(59, 130, 246, 0.2);
|
422 |
+
border-radius: 16px;
|
423 |
+
padding: 24px;
|
424 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
|
425 |
+
}
|
426 |
+
|
427 |
+
/* Chatbot styling */
|
428 |
+
.chatbot {
|
429 |
+
background: transparent !important;
|
430 |
+
border: none !important;
|
431 |
+
border-radius: 12px !important;
|
432 |
+
}
|
433 |
+
|
434 |
+
/* Chat messages - simplified approach with tighter spacing */
|
435 |
+
.chatbot .message {
|
436 |
+
background: rgba(30, 41, 59, 0.6) !important;
|
437 |
+
color: #e2e8f0 !important;
|
438 |
+
border-radius: 12px !important;
|
439 |
+
padding: 16px 20px !important;
|
440 |
+
margin: 8px 0 !important;
|
441 |
+
border: 1px solid rgba(59, 130, 246, 0.1);
|
442 |
+
backdrop-filter: blur(10px);
|
443 |
+
}
|
444 |
+
|
445 |
+
/* User message styling */
|
446 |
+
.chatbot .message.user {
|
447 |
+
background: linear-gradient(135deg, #3b82f6 0%, #1e40af 100%) !important;
|
448 |
+
color: white !important;
|
449 |
+
border: none !important;
|
450 |
+
margin-left: 0 !important;
|
451 |
+
margin-right: 0 !important;
|
452 |
+
}
|
453 |
+
|
454 |
+
/* Bot message styling */
|
455 |
+
.chatbot .message.bot {
|
456 |
+
background: rgba(30, 41, 59, 0.8) !important;
|
457 |
+
color: #f1f5f9 !important;
|
458 |
+
border: 1px solid rgba(59, 130, 246, 0.2) !important;
|
459 |
+
margin-left: 0 !important;
|
460 |
+
margin-right: 0 !important;
|
461 |
+
}
|
462 |
+
|
463 |
+
/* Remove avatar spacing and containers */
|
464 |
+
.chatbot .avatar {
|
465 |
+
display: none !important;
|
466 |
+
}
|
467 |
+
|
468 |
+
.chatbot .message-row {
|
469 |
+
margin: 0 !important;
|
470 |
+
padding: 0 !important;
|
471 |
+
gap: 0 !important;
|
472 |
+
}
|
473 |
+
|
474 |
+
.chatbot .message-wrap {
|
475 |
+
margin: 0 !important;
|
476 |
+
padding: 0 !important;
|
477 |
+
width: 100% !important;
|
478 |
+
}
|
479 |
+
|
480 |
+
/* Input section - redesigned */
|
481 |
+
.input-section {
|
482 |
+
background: rgba(30, 41, 59, 0.4);
|
483 |
+
backdrop-filter: blur(20px);
|
484 |
+
border: 1px solid rgba(59, 130, 246, 0.2);
|
485 |
+
border-radius: 16px;
|
486 |
+
padding: 32px;
|
487 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
|
488 |
+
}
|
489 |
+
|
490 |
+
.input-row {
|
491 |
+
display: flex;
|
492 |
+
gap: 0;
|
493 |
+
align-items: stretch;
|
494 |
+
margin-bottom: 24px;
|
495 |
+
background: rgba(15, 23, 42, 0.8);
|
496 |
+
border-radius: 12px;
|
497 |
+
border: 1px solid rgba(59, 130, 246, 0.3);
|
498 |
+
overflow: hidden;
|
499 |
+
box-shadow: 0 4px 20px rgba(59, 130, 246, 0.1);
|
500 |
+
position: relative;
|
501 |
+
}
|
502 |
+
|
503 |
+
/* Input textbox - better integration */
|
504 |
+
.input-textbox {
|
505 |
+
flex: 1;
|
506 |
+
background: transparent !important;
|
507 |
+
border: none !important;
|
508 |
+
border-radius: 0 !important;
|
509 |
+
margin: 0 !important;
|
510 |
+
padding-right: 0 !important;
|
511 |
+
}
|
512 |
+
|
513 |
+
.input-textbox textarea {
|
514 |
+
background: transparent !important;
|
515 |
+
border: none !important;
|
516 |
+
color: #f1f5f9 !important;
|
517 |
+
font-size: 1rem !important;
|
518 |
+
padding: 20px 24px 20px 24px !important;
|
519 |
+
resize: none !important;
|
520 |
+
font-family: inherit !important;
|
521 |
+
min-height: 80px !important;
|
522 |
+
width: 100% !important;
|
523 |
+
padding-right: 100px !important;
|
524 |
+
margin: 0 !important;
|
525 |
+
line-height: 1.5 !important;
|
526 |
+
}
|
527 |
+
|
528 |
+
.input-textbox textarea::placeholder {
|
529 |
+
color: #94a3b8 !important;
|
530 |
+
opacity: 1 !important;
|
531 |
+
}
|
532 |
+
|
533 |
+
.input-textbox textarea:focus {
|
534 |
+
outline: none !important;
|
535 |
+
box-shadow: none !important;
|
536 |
+
}
|
537 |
+
|
538 |
+
/* Submit button - positioned at the end of input box */
|
539 |
+
#submit-btn {
|
540 |
+
position: absolute !important;
|
541 |
+
right: 8px !important;
|
542 |
+
top: 50% !important;
|
543 |
+
transform: translateY(-50%) !important;
|
544 |
+
background: linear-gradient(135deg, #3b82f6 0%, #1e40af 100%) !important;
|
545 |
+
color: white !important;
|
546 |
+
border: none !important;
|
547 |
+
border-radius: 8px !important;
|
548 |
+
font-size: 0.9rem !important;
|
549 |
+
font-weight: 600 !important;
|
550 |
+
padding: 12px 20px !important;
|
551 |
+
min-width: 80px !important;
|
552 |
+
height: 40px !important;
|
553 |
+
transition: all 0.3s ease !important;
|
554 |
+
text-transform: uppercase;
|
555 |
+
letter-spacing: 0.05em;
|
556 |
+
z-index: 10;
|
557 |
+
}
|
558 |
+
|
559 |
+
#submit-btn:hover {
|
560 |
+
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important;
|
561 |
+
box-shadow: 0 0 20px rgba(59, 130, 246, 0.4) !important;
|
562 |
+
}
|
563 |
+
|
564 |
+
/* Quick actions - card style */
|
565 |
+
.quick-actions {
|
566 |
+
display: grid;
|
567 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
568 |
+
gap: 16px;
|
569 |
+
margin-bottom: 24px;
|
570 |
+
}
|
571 |
+
|
572 |
+
.quick-action-btn {
|
573 |
+
background: rgba(15, 23, 42, 0.6) !important;
|
574 |
+
backdrop-filter: blur(10px);
|
575 |
+
border: 1px solid rgba(59, 130, 246, 0.2) !important;
|
576 |
+
color: #e2e8f0 !important;
|
577 |
+
border-radius: 12px !important;
|
578 |
+
padding: 20px 24px !important;
|
579 |
+
font-size: 0.95rem !important;
|
580 |
+
font-weight: 500 !important;
|
581 |
+
transition: all 0.3s ease !important;
|
582 |
+
text-align: left !important;
|
583 |
+
position: relative;
|
584 |
+
overflow: hidden;
|
585 |
+
}
|
586 |
+
|
587 |
+
.quick-action-btn::before {
|
588 |
+
content: '';
|
589 |
+
position: absolute;
|
590 |
+
top: 0;
|
591 |
+
left: 0;
|
592 |
+
right: 0;
|
593 |
+
bottom: 0;
|
594 |
+
background: linear-gradient(135deg, rgba(59, 130, 246, 0.1) 0%, rgba(6, 182, 212, 0.1) 100%);
|
595 |
+
opacity: 0;
|
596 |
+
transition: opacity 0.3s ease;
|
597 |
+
}
|
598 |
+
|
599 |
+
.quick-action-btn:hover {
|
600 |
+
border-color: #3b82f6 !important;
|
601 |
+
color: #ffffff !important;
|
602 |
+
transform: translateY(-2px) !important;
|
603 |
+
box-shadow: 0 8px 25px rgba(59, 130, 246, 0.2) !important;
|
604 |
+
}
|
605 |
+
|
606 |
+
.quick-action-btn:hover::before {
|
607 |
+
opacity: 1;
|
608 |
+
}
|
609 |
+
|
610 |
+
/* Control buttons */
|
611 |
+
.control-buttons {
|
612 |
+
display: flex;
|
613 |
+
justify-content: center;
|
614 |
+
}
|
615 |
+
|
616 |
+
#clear-btn {
|
617 |
+
background: rgba(15, 23, 42, 0.6) !important;
|
618 |
+
backdrop-filter: blur(10px);
|
619 |
+
border: 1px solid rgba(239, 68, 68, 0.3) !important;
|
620 |
+
color: #f87171 !important;
|
621 |
+
border-radius: 8px !important;
|
622 |
+
padding: 12px 24px !important;
|
623 |
+
font-weight: 500 !important;
|
624 |
+
font-size: 0.9rem !important;
|
625 |
+
transition: all 0.3s ease !important;
|
626 |
+
text-transform: uppercase;
|
627 |
+
letter-spacing: 0.05em;
|
628 |
+
}
|
629 |
+
|
630 |
+
#clear-btn:hover {
|
631 |
+
background: rgba(239, 68, 68, 0.1) !important;
|
632 |
+
border-color: #ef4444 !important;
|
633 |
+
color: #ffffff !important;
|
634 |
+
box-shadow: 0 4px 15px rgba(239, 68, 68, 0.2) !important;
|
635 |
+
}
|
636 |
+
|
637 |
+
/* Footer */
|
638 |
+
.footer {
|
639 |
+
text-align: center;
|
640 |
+
color: #64748b;
|
641 |
+
font-size: 0.85rem;
|
642 |
+
margin-top: 32px;
|
643 |
+
padding: 20px;
|
644 |
+
}
|
645 |
+
|
646 |
+
/* Scrollbar */
|
647 |
+
::-webkit-scrollbar {
|
648 |
+
width: 8px;
|
649 |
+
}
|
650 |
+
|
651 |
+
::-webkit-scrollbar-track {
|
652 |
+
background: rgba(30, 41, 59, 0.3);
|
653 |
+
border-radius: 4px;
|
654 |
+
}
|
655 |
+
|
656 |
+
::-webkit-scrollbar-thumb {
|
657 |
+
background: linear-gradient(135deg, #3b82f6, #1e40af);
|
658 |
+
border-radius: 4px;
|
659 |
+
}
|
660 |
+
|
661 |
+
::-webkit-scrollbar-thumb:hover {
|
662 |
+
background: linear-gradient(135deg, #2563eb, #1d4ed8);
|
663 |
+
}
|
664 |
+
|
665 |
+
/* Mobile responsiveness */
|
666 |
+
@media (max-width: 1024px) {
|
667 |
+
.content-area {
|
668 |
+
padding: 24px;
|
669 |
+
}
|
670 |
+
|
671 |
+
.header-section {
|
672 |
+
padding: 16px 20px 12px 20px;
|
673 |
+
}
|
674 |
+
|
675 |
+
.main-title {
|
676 |
+
font-size: 1.8rem !important;
|
677 |
+
}
|
678 |
+
|
679 |
+
.subtitle {
|
680 |
+
font-size: 0.9rem !important;
|
681 |
+
}
|
682 |
+
|
683 |
+
.input-textbox textarea {
|
684 |
+
padding-right: 90px !important;
|
685 |
+
}
|
686 |
+
|
687 |
+
#submit-btn {
|
688 |
+
min-width: 70px !important;
|
689 |
+
padding: 10px 16px !important;
|
690 |
+
font-size: 0.8rem !important;
|
691 |
+
}
|
692 |
+
|
693 |
+
.quick-actions {
|
694 |
+
grid-template-columns: 1fr;
|
695 |
+
}
|
696 |
+
|
697 |
+
.chatbot .message.user, .chatbot .message.bot {
|
698 |
+
margin-left: 0 !important;
|
699 |
+
margin-right: 0 !important;
|
700 |
+
}
|
701 |
+
}
|
702 |
+
|
703 |
+
/* Remove Gradio defaults */
|
704 |
+
.gr-form, .gr-box {
|
705 |
+
background: transparent !important;
|
706 |
+
border: none !important;
|
707 |
+
}
|
708 |
+
|
709 |
+
.gr-button {
|
710 |
+
font-family: inherit !important;
|
711 |
+
}
|
712 |
+
"""
|
713 |
+
) as demo:
|
714 |
+
|
715 |
+
with gr.Column(elem_classes="main-container"):
|
716 |
+
# Modern gradient header - REDUCED SPACING
|
717 |
+
with gr.Column(elem_classes="header-section"):
|
718 |
+
gr.Markdown("# 🤖 SysModeler AI Assistant", elem_classes="main-title")
|
719 |
+
gr.Markdown("*Your intelligent companion for SysML modeling and systems engineering*", elem_classes="subtitle")
|
720 |
+
|
721 |
+
# Content area
|
722 |
+
with gr.Column(elem_classes="content-area"):
|
723 |
+
# Chat section
|
724 |
+
with gr.Column(elem_classes="chat-section"):
|
725 |
+
with gr.Column(elem_classes="chat-container"):
|
726 |
+
chatbot = gr.Chatbot(
|
727 |
+
height=580,
|
728 |
+
elem_classes="chatbot",
|
729 |
+
avatar_images=None, # Removed avatar images
|
730 |
+
bubble_full_width=False,
|
731 |
+
show_copy_button=True,
|
732 |
+
show_share_button=False
|
733 |
+
)
|
734 |
+
|
735 |
+
# Input section
|
736 |
+
with gr.Column(elem_classes="input-section"):
|
737 |
+
with gr.Column():
|
738 |
+
# Input row with integrated send button
|
739 |
+
with gr.Row(elem_classes="input-row"):
|
740 |
+
msg = gr.Textbox(
|
741 |
+
placeholder="Ask me about SysML diagrams, modeling concepts, or tools...",
|
742 |
+
lines=3,
|
743 |
+
show_label=False,
|
744 |
+
elem_classes="input-textbox",
|
745 |
+
container=False
|
746 |
+
)
|
747 |
+
submit_btn = gr.Button("Send", elem_id="submit-btn")
|
748 |
+
|
749 |
+
# Quick actions
|
750 |
+
with gr.Row(elem_classes="quick-actions"):
|
751 |
+
quick_intro = gr.Button("📚 SysML Introduction", elem_classes="quick-action-btn")
|
752 |
+
quick_diagrams = gr.Button("📊 Diagram Types", elem_classes="quick-action-btn")
|
753 |
+
quick_tools = gr.Button("🛠️ Tool Comparison", elem_classes="quick-action-btn")
|
754 |
+
quick_sysmodeler = gr.Button("⭐ SysModeler Features", elem_classes="quick-action-btn")
|
755 |
+
|
756 |
+
# Control
|
757 |
+
with gr.Row(elem_classes="control-buttons"):
|
758 |
+
clear = gr.Button("Clear", elem_id="clear-btn")
|
759 |
+
|
760 |
+
# Footer
|
761 |
+
with gr.Column(elem_classes="footer"):
|
762 |
+
gr.Markdown("*Powered by Azure OpenAI & Advanced RAG Technology*")
|
763 |
+
|
764 |
+
# State management
|
765 |
+
state = gr.State([])
|
766 |
+
|
767 |
+
# Event handlers
|
768 |
+
submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
|
769 |
+
msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
|
770 |
+
clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])
|
771 |
+
|
772 |
+
# Quick actions
|
773 |
+
quick_intro.click(fn=lambda: ("What is SysML and how do I get started?", []), outputs=[msg, chatbot])
|
774 |
+
quick_diagrams.click(fn=lambda: ("Explain the 9 SysML diagram types with examples", []), outputs=[msg, chatbot])
|
775 |
+
quick_tools.click(fn=lambda: ("What are the best SysML modeling tools available?", []), outputs=[msg, chatbot])
|
776 |
+
quick_sysmodeler.click(fn=lambda: ("Tell me about SysModeler.ai features and capabilities", []), outputs=[msg, chatbot])
|
777 |
+
|
778 |
+
|
779 |
+
if __name__ == "__main__":
|
780 |
+
demo.launch()
|