File size: 7,500 Bytes
fc3a249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e12b72c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import gradio as gr
import warnings
import json
from dotenv import load_dotenv
from typing import List
import time
from functools import lru_cache
import logging

from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import AzureOpenAIEmbeddings
from openai import AzureOpenAI

# Patch Gradio bug
import gradio_client.utils
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"

# Load environment variables
load_dotenv()
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")

if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
    raise ValueError("Missing one or more Azure OpenAI environment variables.")

warnings.filterwarnings("ignore")

# Embeddings
embeddings = AzureOpenAIEmbeddings(
    azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
    azure_endpoint=AZURE_OPENAI_ENDPOINT,
    openai_api_key=AZURE_OPENAI_API_KEY,
    openai_api_version="2025-01-01-preview",
    chunk_size=1000
)

# Vectorstore
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)

# OpenAI client
client = AzureOpenAI(
    api_key=AZURE_OPENAI_API_KEY,
    api_version="2025-01-01-preview",
    azure_endpoint=AZURE_OPENAI_ENDPOINT
)

# Logger
logger = logging.getLogger(__name__)

# SysML retriever function
@lru_cache(maxsize=100)
def sysml_retriever(query: str) -> str:
    try:
        results = vectorstore.similarity_search(query, k=100)
        contexts = [doc.page_content for doc in results]
        return "\n\n".join(contexts)
    except Exception as e:
        logger.error(f"Retrieval error: {str(e)}")
        return "Unable to retrieve information at this time."

# Dummy functions
def dummy_weather_lookup(location: str = "London") -> str:
    return f"The weather in {location} is sunny and 25°C."

def dummy_time_lookup(timezone: str = "UTC") -> str:
    return f"The current time in {timezone} is 3:00 PM."

# Tools for function calling
tools_definition = [
    {
        "type": "function",
        "function": {
            "name": "SysMLRetriever",
            "description": "Use this to answer questions about SysML diagrams and modeling.",
            "parameters": {
                "type": "object",
                "properties": {
                    "query": {"type": "string", "description": "The search query to find information about SysML"}
                },
                "required": ["query"]
            }
        }
    },
    {
        "type": "function",
        "function": {
            "name": "WeatherLookup",
            "description": "Use this to look up the current weather in a specified location.",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {"type": "string", "description": "The location to look up the weather for"}
                },
                "required": ["location"]
            }
        }
    },
    {
        "type": "function",
        "function": {
            "name": "TimeLookup",
            "description": "Use this to look up the current time in a specified timezone.",
            "parameters": {
                "type": "object",
                "properties": {
                    "timezone": {"type": "string", "description": "The timezone to look up the current time for"}
                },
                "required": ["timezone"]
            }
        }
    }
]

# Tool execution mapping
tool_mapping = {
    "SysMLRetriever": sysml_retriever,
    "WeatherLookup": dummy_weather_lookup,
    "TimeLookup": dummy_time_lookup
}

# Convert chat history
def convert_history_to_messages(history):
    messages = []
    for user, bot in history:
        messages.append({"role": "user", "content": user})
        messages.append({"role": "assistant", "content": bot})
    return messages

# Chatbot logic
def sysml_chatbot(message, history):
    chat_messages = convert_history_to_messages(history)
    full_messages = [
        {"role": "system", "content": "You are a helpful SysML modeling assistant and also a capable smart Assistant"}
    ] + chat_messages + [{"role": "user", "content": message}]
    try:
        response = client.chat.completions.create(
            model=AZURE_OPENAI_LLM_DEPLOYMENT,
            messages=full_messages,
            tools=tools_definition,
            tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
        )
        assistant_message = response.choices[0].message
        if assistant_message.tool_calls:
            tool_call = assistant_message.tool_calls[0]
            function_name = tool_call.function.name
            function_args = json.loads(tool_call.function.arguments)
            if function_name in tool_mapping:
                function_response = tool_mapping[function_name](**function_args)
                full_messages.append({
                    "role": "assistant",
                    "content": None,
                    "tool_calls": [{
                        "id": tool_call.id,
                        "type": "function",
                        "function": {
                            "name": function_name,
                            "arguments": tool_call.function.arguments
                        }
                    }]
                })
                full_messages.append({
                    "role": "tool",
                    "tool_call_id": tool_call.id,
                    "content": function_response
                })
                second_response = client.chat.completions.create(
                    model=AZURE_OPENAI_LLM_DEPLOYMENT,
                    messages=full_messages
                )
                answer = second_response.choices[0].message.content
            else:
                answer = f"I tried to use a function '{function_name}' that's not available."
        else:
            answer = assistant_message.content
        history.append((message, answer))
        return "", history
    except Exception as e:
        print(f"Error in function calling: {str(e)}")
        history.append((message, "Sorry, something went wrong."))
        return "", history

# === Gradio UI ===
with gr.Blocks(css="""
#submit-btn {
    height: 100%;
    background-color: #48CAE4;
    color: white;
    font-size: 1.5em;
}
""") as demo:

    gr.Markdown("## SysModeler Chatbot")

    chatbot = gr.Chatbot(height=600)
    with gr.Row():
        with gr.Column(scale=5):
            msg = gr.Textbox(
                placeholder="Ask me about SysML diagrams or concepts...",
                lines=3,
                show_label=False
            )
        with gr.Column(scale=1, min_width=50):
            submit_btn = gr.Button("➤", elem_id="submit-btn")

    clear = gr.Button("Clear")
    state = gr.State([])

    submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
    msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
    clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])

if __name__ == "__main__":
    demo.launch()