File size: 10,637 Bytes
51c9688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2c317
 
 
51c9688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2c317
51c9688
 
 
 
 
 
 
419c1aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51c9688
419c1aa
 
 
 
51c9688
 
419c1aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51c9688
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os

import gradio as gr
import numpy as np
import spaces
import supervision as sv
import torch
from render import draw_links, draw_points, keypoint_colors, link_colors
from tqdm import tqdm

from transformers import (
    AutoProcessor,
    RTDetrForObjectDetection,
    VitPoseForPoseEstimation,
)

css = """
.feedback textarea {font-size: 24px !important}
"""

device = "cuda"


def calculate_end_frame_index(source_video_path):
    video_info = sv.VideoInfo.from_video_path(source_video_path)
    return video_info.total_frames


@spaces.GPU
def process_image(
    input_image,
    model_variant,
    progress=gr.Progress(track_tqdm=True),
):
    # You can choose detector by your choice
    person_image_processor = AutoProcessor.from_pretrained(
        "PekingU/rtdetr_r50vd_coco_o365"
    )
    person_model = RTDetrForObjectDetection.from_pretrained(
        "PekingU/rtdetr_r50vd_coco_o365", device_map=device
    )

    if model_variant == "Base":
        model_name = "yonigozlan/synthpose-vitpose-base-hf"
    else:
        model_name = "yonigozlan/synthpose-vitpose-huge-hf"

    image_processor = AutoProcessor.from_pretrained(model_name)
    model = VitPoseForPoseEstimation.from_pretrained(model_name, device_map=device)

    keypoint_edges = model.config.edges

    frame = np.array(input_image)
    inputs = person_image_processor(images=frame, return_tensors="pt").to(device)

    with torch.no_grad():
        outputs = person_model(**inputs)

    results = person_image_processor.post_process_object_detection(
        outputs,
        target_sizes=torch.tensor([(frame.shape[0], frame.shape[1])]),
        threshold=0.4,
    )
    result = results[0]  # take first image results

    # Human label refers 0 index in COCO dataset
    person_boxes = result["boxes"][result["labels"] == 0]
    person_boxes = person_boxes.cpu().numpy()

    # Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
    person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
    person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

    # ------------------------------------------------------------------------
    # Stage 2. Detect keypoints for each person found
    # ------------------------------------------------------------------------

    inputs = image_processor(frame, boxes=[person_boxes], return_tensors="pt").to(
        device
    )

    with torch.no_grad():
        outputs = model(**inputs)

    pose_results = image_processor.post_process_pose_estimation(
        outputs, boxes=[person_boxes]
    )
    image_pose_result = pose_results[0]  # results for first image

    for pose_result in image_pose_result:
        scores = np.array(pose_result["scores"])
        keypoints = np.array(pose_result["keypoints"])

        # draw each point on image
        draw_points(
            frame,
            keypoints,
            scores,
            keypoint_colors,
            keypoint_score_threshold=0.3,
            radius=max(2, int(max(frame.shape[0], frame.shape[1]) / 500)),
            show_keypoint_weight=False,
        )

        # draw links
        draw_links(
            frame,
            keypoints,
            scores,
            keypoint_edges,
            link_colors,
            keypoint_score_threshold=0.3,
            thickness=max(2, int(max(frame.shape[0], frame.shape[1]) / 1000)),
            show_keypoint_weight=False,
        )

    return frame


@spaces.GPU
def process_video(
    input_video,
    model_variant,
    progress=gr.Progress(track_tqdm=True),
):
    video_info = sv.VideoInfo.from_video_path(input_video)
    total = calculate_end_frame_index(input_video)
    frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total)

    result_file_name = "output.mp4"
    result_file_path = os.path.join(os.getcwd(), result_file_name)
    # You can choose detector by your choice
    person_image_processor = AutoProcessor.from_pretrained(
        "PekingU/rtdetr_r50vd_coco_o365"
    )
    person_model = RTDetrForObjectDetection.from_pretrained(
        "PekingU/rtdetr_r50vd_coco_o365", device_map=device
    )
    if model_variant == "Base":
        model_name = "yonigozlan/synthpose-vitpose-base-hf"
    else:
        model_name = "yonigozlan/synthpose-vitpose-huge-hf"

    image_processor = AutoProcessor.from_pretrained(model_name)
    model = VitPoseForPoseEstimation.from_pretrained(model_name, device_map=device)

    keypoint_edges = model.config.edges

    with sv.VideoSink(result_file_path, video_info=video_info) as sink:
        for _ in tqdm(range(total), desc="Processing video.."):
            try:
                frame = next(frame_generator)
            except StopIteration:
                break
            # ------------------------------------------------------------------------
            # Stage 1. Detect humans on the image
            # ------------------------------------------------------------------------
            inputs = person_image_processor(images=frame, return_tensors="pt").to(
                device
            )

            with torch.no_grad():
                outputs = person_model(**inputs)

            results = person_image_processor.post_process_object_detection(
                outputs,
                target_sizes=torch.tensor([(frame.shape[0], frame.shape[1])]),
                threshold=0.4,
            )
            result = results[0]  # take first image results

            # Human label refers 0 index in COCO dataset
            person_boxes = result["boxes"][result["labels"] == 0]
            person_boxes = person_boxes.cpu().numpy()

            # Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
            person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
            person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

            # ------------------------------------------------------------------------
            # Stage 2. Detect keypoints for each person found
            # ------------------------------------------------------------------------

            if len(person_boxes) == 0:
                sink.write_frame(frame)
                continue
            inputs = image_processor(
                frame, boxes=[person_boxes], return_tensors="pt"
            ).to(device)

            with torch.no_grad():
                outputs = model(**inputs)

            pose_results = image_processor.post_process_pose_estimation(
                outputs, boxes=[person_boxes]
            )
            image_pose_result = pose_results[0]  # results for first image

            for pose_result in image_pose_result:
                scores = np.array(pose_result["scores"])
                keypoints = np.array(pose_result["keypoints"])

                # draw each point on image
                draw_points(
                    frame,
                    keypoints,
                    scores,
                    keypoint_colors,
                    keypoint_score_threshold=0.3,
                    radius=max(2, int(frame.shape[0] / 500)),
                    show_keypoint_weight=False,
                )

                # draw links
                draw_links(
                    frame,
                    keypoints,
                    scores,
                    keypoint_edges,
                    link_colors,
                    keypoint_score_threshold=0.3,
                    thickness=max(1, int(frame.shape[0] / 1000)),
                    show_keypoint_weight=False,
                )

            sink.write_frame(frame)

    return result_file_path


with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.Markdown("## Markerless Motion Capture with SynthPose")
    gr.Markdown(
        """
SynthPose is a new approach that enables finetuning of pre-trained 2D human pose models to predict an arbitrarily denser set of keypoints for accurate kinematic analysis through the use of synthetic data.
More details are available in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788).<br />
This particular variant was finetuned on a set of keypoints usually found on motion capture setups, and include coco keypoints as well.<br />
The keypoints part of the skeleton are the COCO keypoints, and the pink ones the anatomical markers.
"""
    )
    gr.Markdown(
        "Simply upload a video, and press run to start the inference! You can also try the examples below. πŸ‘‡"
    )
    with gr.Tabs():
        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column():
                    model_variant = gr.Radio(
                        ["Base", "Huge"],
                        label="Model Variant",
                        value="Base",
                        interactive=True,
                    )
                    input_video = gr.Video(label="Input Video")
                with gr.Column():
                    output_video = gr.Video(label="Output Video")
            with gr.Row():
                submit_video = gr.Button(variant="primary")

            example = gr.Examples(
                examples=[
                    ["./tennis.mp4"],
                    ["./football.mp4"],
                    ["./basket.mp4"],
                    ["./hurdles.mp4"],
                ],
                inputs=[input_video],
                outputs=output_video,
            )
            submit_video.click(
                fn=process_video,
                inputs=[input_video, model_variant],
                outputs=[output_video],
            )

        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column():
                    model_variant = gr.Radio(
                        ["Base", "Huge"],
                        label="Model Variant",
                        value="Base",
                        interactive=True,
                    )
                    input_image = gr.Image(label="Input Image")
                with gr.Column():
                    output_image = gr.Image(label="Output Image")

            with gr.Row():
                submit_image = gr.Button(variant="primary")

            example_image = gr.Examples(
                examples=[
                    ["demo.jpeg"],
                ],
                inputs=[input_image],
                outputs=output_image,
            )
            submit_image.click(
                fn=process_image,
                inputs=[input_image, model_variant],
                outputs=[output_image],
            )


if __name__ == "__main__":
    demo.launch(show_error=True)