Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
51c9688
1
Parent(s):
ec83bbc
initial commit
Browse files- .gitattributes +4 -0
- app.py +332 -0
- basket.mp4 +3 -0
- football.mp4 +3 -0
- hurdles.mp4 +3 -0
- render.py +125 -0
- requirements.txt +6 -0
- tennis.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
basket.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
football.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
hurdles.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
tennis.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import spaces
|
6 |
+
import supervision as sv
|
7 |
+
import torch
|
8 |
+
from render import draw_links, draw_points, keypoint_colors, link_colors
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from transformers import (
|
12 |
+
AutoProcessor,
|
13 |
+
RTDetrForObjectDetection,
|
14 |
+
VitPoseForPoseEstimation,
|
15 |
+
)
|
16 |
+
|
17 |
+
css = """
|
18 |
+
.feedback textarea {font-size: 24px !important}
|
19 |
+
"""
|
20 |
+
|
21 |
+
device = "cuda"
|
22 |
+
|
23 |
+
|
24 |
+
def calculate_end_frame_index(source_video_path):
|
25 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
26 |
+
return video_info.total_frames
|
27 |
+
|
28 |
+
|
29 |
+
@spaces.GPU
|
30 |
+
def process_image(
|
31 |
+
input_image,
|
32 |
+
model_variant,
|
33 |
+
progress=gr.Progress(track_tqdm=True),
|
34 |
+
):
|
35 |
+
# You can choose detector by your choice
|
36 |
+
person_image_processor = AutoProcessor.from_pretrained(
|
37 |
+
"PekingU/rtdetr_r50vd_coco_o365"
|
38 |
+
)
|
39 |
+
person_model = RTDetrForObjectDetection.from_pretrained(
|
40 |
+
"PekingU/rtdetr_r50vd_coco_o365", device_map=device
|
41 |
+
)
|
42 |
+
|
43 |
+
if model_variant == "Base":
|
44 |
+
model_name = "yonigozlan/synthpose-vitpose-base-hf"
|
45 |
+
else:
|
46 |
+
model_name = "yonigozlan/synthpose-vitpose-huge-hf"
|
47 |
+
|
48 |
+
image_processor = AutoProcessor.from_pretrained(model_name)
|
49 |
+
model = VitPoseForPoseEstimation.from_pretrained(model_name, device_map=device)
|
50 |
+
|
51 |
+
keypoint_edges = model.config.edges
|
52 |
+
|
53 |
+
frame = np.array(input_image)
|
54 |
+
inputs = person_image_processor(images=frame, return_tensors="pt").to(device)
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = person_model(**inputs)
|
58 |
+
|
59 |
+
results = person_image_processor.post_process_object_detection(
|
60 |
+
outputs,
|
61 |
+
target_sizes=torch.tensor([(frame.shape[0], frame.shape[1])]),
|
62 |
+
threshold=0.4,
|
63 |
+
)
|
64 |
+
result = results[0] # take first image results
|
65 |
+
|
66 |
+
# Human label refers 0 index in COCO dataset
|
67 |
+
person_boxes = result["boxes"][result["labels"] == 0]
|
68 |
+
person_boxes = person_boxes.cpu().numpy()
|
69 |
+
|
70 |
+
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
|
71 |
+
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
|
72 |
+
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
|
73 |
+
|
74 |
+
# ------------------------------------------------------------------------
|
75 |
+
# Stage 2. Detect keypoints for each person found
|
76 |
+
# ------------------------------------------------------------------------
|
77 |
+
|
78 |
+
inputs = image_processor(frame, boxes=[person_boxes], return_tensors="pt").to(
|
79 |
+
device
|
80 |
+
)
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs = model(**inputs)
|
84 |
+
|
85 |
+
pose_results = image_processor.post_process_pose_estimation(
|
86 |
+
outputs, boxes=[person_boxes]
|
87 |
+
)
|
88 |
+
image_pose_result = pose_results[0] # results for first image
|
89 |
+
|
90 |
+
for pose_result in image_pose_result:
|
91 |
+
scores = np.array(pose_result["scores"])
|
92 |
+
keypoints = np.array(pose_result["keypoints"])
|
93 |
+
|
94 |
+
# draw each point on image
|
95 |
+
draw_points(
|
96 |
+
frame,
|
97 |
+
keypoints,
|
98 |
+
scores,
|
99 |
+
keypoint_colors,
|
100 |
+
keypoint_score_threshold=0.3,
|
101 |
+
radius=max(2, int(max(frame.shape[0], frame.shape[1]) / 500)),
|
102 |
+
show_keypoint_weight=False,
|
103 |
+
)
|
104 |
+
|
105 |
+
# draw links
|
106 |
+
draw_links(
|
107 |
+
frame,
|
108 |
+
keypoints,
|
109 |
+
scores,
|
110 |
+
keypoint_edges,
|
111 |
+
link_colors,
|
112 |
+
keypoint_score_threshold=0.3,
|
113 |
+
thickness=max(2, int(max(frame.shape[0], frame.shape[1]) / 1000)),
|
114 |
+
show_keypoint_weight=False,
|
115 |
+
)
|
116 |
+
|
117 |
+
return frame
|
118 |
+
|
119 |
+
|
120 |
+
@spaces.GPU
|
121 |
+
def process_video(
|
122 |
+
input_video,
|
123 |
+
model_variant,
|
124 |
+
progress=gr.Progress(track_tqdm=True),
|
125 |
+
):
|
126 |
+
video_info = sv.VideoInfo.from_video_path(input_video)
|
127 |
+
total = calculate_end_frame_index(input_video)
|
128 |
+
frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total)
|
129 |
+
|
130 |
+
result_file_name = "output.mp4"
|
131 |
+
result_file_path = os.path.join(os.getcwd(), result_file_name)
|
132 |
+
# You can choose detector by your choice
|
133 |
+
person_image_processor = AutoProcessor.from_pretrained(
|
134 |
+
"PekingU/rtdetr_r50vd_coco_o365"
|
135 |
+
)
|
136 |
+
person_model = RTDetrForObjectDetection.from_pretrained(
|
137 |
+
"PekingU/rtdetr_r50vd_coco_o365", device_map=device
|
138 |
+
)
|
139 |
+
if model_variant == "Base":
|
140 |
+
model_name = "yonigozlan/synthpose-vitpose-base-hf"
|
141 |
+
else:
|
142 |
+
model_name = "yonigozlan/synthpose-vitpose-huge-hf"
|
143 |
+
|
144 |
+
image_processor = AutoProcessor.from_pretrained(model_name)
|
145 |
+
model = VitPoseForPoseEstimation.from_pretrained(model_name, device_map=device)
|
146 |
+
|
147 |
+
keypoint_edges = model.config.edges
|
148 |
+
|
149 |
+
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
|
150 |
+
for _ in tqdm(range(total), desc="Processing video.."):
|
151 |
+
try:
|
152 |
+
frame = next(frame_generator)
|
153 |
+
except StopIteration:
|
154 |
+
break
|
155 |
+
# ------------------------------------------------------------------------
|
156 |
+
# Stage 1. Detect humans on the image
|
157 |
+
# ------------------------------------------------------------------------
|
158 |
+
|
159 |
+
inputs = person_image_processor(images=frame, return_tensors="pt").to(
|
160 |
+
device
|
161 |
+
)
|
162 |
+
|
163 |
+
with torch.no_grad():
|
164 |
+
outputs = person_model(**inputs)
|
165 |
+
|
166 |
+
results = person_image_processor.post_process_object_detection(
|
167 |
+
outputs,
|
168 |
+
target_sizes=torch.tensor([(frame.shape[0], frame.shape[1])]),
|
169 |
+
threshold=0.4,
|
170 |
+
)
|
171 |
+
result = results[0] # take first image results
|
172 |
+
|
173 |
+
# Human label refers 0 index in COCO dataset
|
174 |
+
person_boxes = result["boxes"][result["labels"] == 0]
|
175 |
+
person_boxes = person_boxes.cpu().numpy()
|
176 |
+
|
177 |
+
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
|
178 |
+
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
|
179 |
+
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
|
180 |
+
|
181 |
+
# ------------------------------------------------------------------------
|
182 |
+
# Stage 2. Detect keypoints for each person found
|
183 |
+
# ------------------------------------------------------------------------
|
184 |
+
|
185 |
+
inputs = image_processor(
|
186 |
+
frame, boxes=[person_boxes], return_tensors="pt"
|
187 |
+
).to(device)
|
188 |
+
|
189 |
+
with torch.no_grad():
|
190 |
+
outputs = model(**inputs)
|
191 |
+
|
192 |
+
pose_results = image_processor.post_process_pose_estimation(
|
193 |
+
outputs, boxes=[person_boxes]
|
194 |
+
)
|
195 |
+
image_pose_result = pose_results[0] # results for first image
|
196 |
+
|
197 |
+
for pose_result in image_pose_result:
|
198 |
+
scores = np.array(pose_result["scores"])
|
199 |
+
keypoints = np.array(pose_result["keypoints"])
|
200 |
+
|
201 |
+
# draw each point on image
|
202 |
+
draw_points(
|
203 |
+
frame,
|
204 |
+
keypoints,
|
205 |
+
scores,
|
206 |
+
keypoint_colors,
|
207 |
+
keypoint_score_threshold=0.3,
|
208 |
+
radius=max(2, int(frame.shape[0] / 500)),
|
209 |
+
show_keypoint_weight=False,
|
210 |
+
)
|
211 |
+
|
212 |
+
# draw links
|
213 |
+
draw_links(
|
214 |
+
frame,
|
215 |
+
keypoints,
|
216 |
+
scores,
|
217 |
+
keypoint_edges,
|
218 |
+
link_colors,
|
219 |
+
keypoint_score_threshold=0.3,
|
220 |
+
thickness=max(1, int(frame.shape[0] / 1000)),
|
221 |
+
show_keypoint_weight=False,
|
222 |
+
)
|
223 |
+
|
224 |
+
sink.write_frame(frame)
|
225 |
+
|
226 |
+
return result_file_path
|
227 |
+
|
228 |
+
|
229 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
230 |
+
gr.Markdown("## Markerless Motion Capture with SynthPose")
|
231 |
+
gr.Markdown(
|
232 |
+
"""
|
233 |
+
SynthPose is a new approach that enables finetuning of pre-trained 2D human pose models to predict an arbitrarily denser set of keypoints for accurate kinematic analysis through the use of synthetic data.
|
234 |
+
More details are available in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788).
|
235 |
+
This particular variant was finetuned on a set of keypoints usually found on motion capture setups, and include coco keypoints as well.<br />
|
236 |
+
The keypoints part of the skeleton are the COCO keypoints, and the pink ones the anatomical markers.
|
237 |
+
"""
|
238 |
+
)
|
239 |
+
gr.Markdown(
|
240 |
+
"Simply upload a video, and press run to start the inference! You can also try the examples below. 👇"
|
241 |
+
)
|
242 |
+
|
243 |
+
with gr.Row():
|
244 |
+
with gr.Column():
|
245 |
+
input_choice = gr.Radio(
|
246 |
+
["Video", "Image"], label="Input Type", value="Video", interactive=True
|
247 |
+
)
|
248 |
+
model_variant = gr.Radio(
|
249 |
+
["Base", "Huge"], label="Model Variant", value="Base", interactive=True
|
250 |
+
)
|
251 |
+
input_video = gr.Video(label="Input Video")
|
252 |
+
input_image = gr.Image(label="Input Image", visible=False)
|
253 |
+
with gr.Column():
|
254 |
+
output_video = gr.Video(label="Output Video")
|
255 |
+
output_image = gr.Image(label="Output Image", visible=False)
|
256 |
+
|
257 |
+
with gr.Row():
|
258 |
+
submit_video = gr.Button(variant="primary")
|
259 |
+
submit_image = gr.Button(variant="primary", visible=False)
|
260 |
+
|
261 |
+
def switch_input_type(input_choice):
|
262 |
+
input_type = input_choice
|
263 |
+
if input_type == "Video":
|
264 |
+
return [
|
265 |
+
gr.update(visible=True),
|
266 |
+
gr.update(visible=False),
|
267 |
+
gr.update(visible=True),
|
268 |
+
gr.update(visible=False),
|
269 |
+
gr.update(visible=True),
|
270 |
+
gr.update(visible=False),
|
271 |
+
]
|
272 |
+
|
273 |
+
# input_video.visible = True
|
274 |
+
# input_image.visible = False
|
275 |
+
# output_video.visible = True
|
276 |
+
# output_image.visible = False
|
277 |
+
# submit_video.visible = True
|
278 |
+
# submit_image.visible = False
|
279 |
+
else:
|
280 |
+
return [
|
281 |
+
gr.update(visible=False),
|
282 |
+
gr.update(visible=True),
|
283 |
+
gr.update(visible=False),
|
284 |
+
gr.update(visible=True),
|
285 |
+
gr.update(visible=False),
|
286 |
+
gr.update(visible=True),
|
287 |
+
]
|
288 |
+
|
289 |
+
# input_video.visible = False
|
290 |
+
# input_image.visible = True
|
291 |
+
# output_video.visible = False
|
292 |
+
# output_image.visible = True
|
293 |
+
# submit_video.visible = False
|
294 |
+
# submit_image.visible = True
|
295 |
+
|
296 |
+
input_choice.change(
|
297 |
+
switch_input_type,
|
298 |
+
inputs=input_choice,
|
299 |
+
outputs=[
|
300 |
+
input_video,
|
301 |
+
input_image,
|
302 |
+
output_video,
|
303 |
+
output_image,
|
304 |
+
submit_video,
|
305 |
+
submit_image,
|
306 |
+
],
|
307 |
+
)
|
308 |
+
|
309 |
+
example = gr.Examples(
|
310 |
+
examples=[
|
311 |
+
["./tennis.mp4"],
|
312 |
+
["./football.mp4"],
|
313 |
+
["./basket.mp4"],
|
314 |
+
["./hurdles.mp4"],
|
315 |
+
],
|
316 |
+
inputs=[input_video],
|
317 |
+
outputs=output_video,
|
318 |
+
)
|
319 |
+
|
320 |
+
submit_video.click(
|
321 |
+
fn=process_video,
|
322 |
+
inputs=[input_video, model_variant],
|
323 |
+
outputs=[output_video],
|
324 |
+
)
|
325 |
+
submit_image.click(
|
326 |
+
fn=process_image,
|
327 |
+
inputs=[input_image, model_variant],
|
328 |
+
outputs=[output_image],
|
329 |
+
)
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
demo.launch(show_error=True)
|
basket.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52ade15f3ec0cb1838627090d646c2c12a21dedbe70d4bd60d9ca3fa6ff45e37
|
3 |
+
size 9347210
|
football.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a85c5c7d5d6e0825f76a71e5e3ee2ce35c8ffbe841ef4bfa544af1089259aa
|
3 |
+
size 2855852
|
hurdles.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ee5aa420ea2629dcefd9bb3a26221f30b4639f6de001c372d6c2f84e79b0b66
|
3 |
+
size 6714353
|
render.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Visualization for advanced user
|
2 |
+
import math
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def draw_points(
|
9 |
+
image,
|
10 |
+
keypoints,
|
11 |
+
scores,
|
12 |
+
pose_keypoint_color,
|
13 |
+
keypoint_score_threshold,
|
14 |
+
radius,
|
15 |
+
show_keypoint_weight,
|
16 |
+
):
|
17 |
+
if pose_keypoint_color is not None:
|
18 |
+
assert len(pose_keypoint_color) == len(keypoints)
|
19 |
+
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
|
20 |
+
x_coord, y_coord = int(kpt[0]), int(kpt[1])
|
21 |
+
if kpt_score > keypoint_score_threshold:
|
22 |
+
color = tuple(int(c) for c in pose_keypoint_color[kid])
|
23 |
+
if show_keypoint_weight:
|
24 |
+
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
|
25 |
+
transparency = max(0, min(1, kpt_score))
|
26 |
+
cv2.addWeighted(
|
27 |
+
image, transparency, image, 1 - transparency, 0, dst=image
|
28 |
+
)
|
29 |
+
else:
|
30 |
+
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
|
31 |
+
|
32 |
+
|
33 |
+
def draw_links(
|
34 |
+
image,
|
35 |
+
keypoints,
|
36 |
+
scores,
|
37 |
+
keypoint_edges,
|
38 |
+
link_colors,
|
39 |
+
keypoint_score_threshold,
|
40 |
+
thickness,
|
41 |
+
show_keypoint_weight,
|
42 |
+
stick_width=2,
|
43 |
+
):
|
44 |
+
height, width, _ = image.shape
|
45 |
+
if keypoint_edges is not None and link_colors is not None:
|
46 |
+
assert len(link_colors) == len(keypoint_edges)
|
47 |
+
for sk_id, sk in enumerate(keypoint_edges):
|
48 |
+
x1, y1, score1 = (
|
49 |
+
int(keypoints[sk[0], 0]),
|
50 |
+
int(keypoints[sk[0], 1]),
|
51 |
+
scores[sk[0]],
|
52 |
+
)
|
53 |
+
x2, y2, score2 = (
|
54 |
+
int(keypoints[sk[1], 0]),
|
55 |
+
int(keypoints[sk[1], 1]),
|
56 |
+
scores[sk[1]],
|
57 |
+
)
|
58 |
+
if (
|
59 |
+
x1 > 0
|
60 |
+
and x1 < width
|
61 |
+
and y1 > 0
|
62 |
+
and y1 < height
|
63 |
+
and x2 > 0
|
64 |
+
and x2 < width
|
65 |
+
and y2 > 0
|
66 |
+
and y2 < height
|
67 |
+
and score1 > keypoint_score_threshold
|
68 |
+
and score2 > keypoint_score_threshold
|
69 |
+
):
|
70 |
+
color = tuple(int(c) for c in link_colors[sk_id])
|
71 |
+
if show_keypoint_weight:
|
72 |
+
X = (x1, x2)
|
73 |
+
Y = (y1, y2)
|
74 |
+
mean_x = np.mean(X)
|
75 |
+
mean_y = np.mean(Y)
|
76 |
+
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
|
77 |
+
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
|
78 |
+
polygon = cv2.ellipse2Poly(
|
79 |
+
(int(mean_x), int(mean_y)),
|
80 |
+
(int(length / 2), int(stick_width)),
|
81 |
+
int(angle),
|
82 |
+
0,
|
83 |
+
360,
|
84 |
+
1,
|
85 |
+
)
|
86 |
+
cv2.fillConvexPoly(image, polygon, color)
|
87 |
+
transparency = max(
|
88 |
+
0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2]))
|
89 |
+
)
|
90 |
+
cv2.addWeighted(
|
91 |
+
image, transparency, image, 1 - transparency, 0, dst=image
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
|
95 |
+
|
96 |
+
|
97 |
+
palette = np.array(
|
98 |
+
[
|
99 |
+
[255, 128, 0],
|
100 |
+
[255, 153, 51],
|
101 |
+
[255, 178, 102],
|
102 |
+
[230, 230, 0],
|
103 |
+
[255, 153, 255],
|
104 |
+
[153, 204, 255],
|
105 |
+
[255, 102, 255],
|
106 |
+
[255, 51, 255],
|
107 |
+
[102, 178, 255],
|
108 |
+
[51, 153, 255],
|
109 |
+
[255, 153, 153],
|
110 |
+
[255, 102, 102],
|
111 |
+
[255, 51, 51],
|
112 |
+
[153, 255, 153],
|
113 |
+
[102, 255, 102],
|
114 |
+
[51, 255, 51],
|
115 |
+
[0, 255, 0],
|
116 |
+
[0, 0, 255],
|
117 |
+
[255, 0, 0],
|
118 |
+
[255, 255, 255],
|
119 |
+
]
|
120 |
+
)
|
121 |
+
|
122 |
+
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
|
123 |
+
keypoint_colors = palette[
|
124 |
+
[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] + [4] * (52 - 17)
|
125 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
timm
|
3 |
+
numpy==1.26.3
|
4 |
+
git+https://github.com/huggingface/transformers.git@main
|
5 |
+
supervision
|
6 |
+
spaces
|
tennis.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc0868023eb6fa2d68338406964396b2cb1123610fdc6af05ba37c539ee9e92a
|
3 |
+
size 6586057
|