srishtirai's picture
Update app.py
81657a9 verified
raw
history blame
4.97 kB
import gradio as gr
import re
import torch
import sqlite3
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import torch
import os
os.makedirs("offload", exist_ok=True)
# βœ… Load fine-tuned models from Hugging Face Model Hub instead of Kaggle paths
codellama_model_path = "srishtirai/codellama-sql-finetuned" # Upload to HF Model Hub
mistral_model_path = "srishtirai/mistral-sql-finetuned" # Upload to HF Model Hub
def load_model(model_path):
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
peft_config = PeftConfig.from_pretrained(model_path)
base_model_name = peft_config.base_model_name_or_path
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16, # Use FP16 to save memory
device_map="auto", # Automatically allocate layers to CPU/GPU
offload_folder="offload" # βœ… Offload large layers to disk
)
model = PeftModel.from_pretrained(base_model, model_path)
model.eval()
return model, tokenizer
# βœ… Load both models from Hugging Face
codellama_model, codellama_tokenizer = load_model(codellama_model_path)
mistral_model, mistral_tokenizer = load_model(mistral_model_path)
# βœ… Function to format input
def format_input_prompt(schema, question):
return f"""### Context:
{schema}
### Question:
{question}
### Response:
Here's the SQL query:
"""
# βœ… Function to generate SQL with explanation
def generate_sql_with_explanation(model_choice, schema, question, max_new_tokens=512, temperature=0.7):
"""
Generate SQL query and explanation based on the selected model.
"""
# Select model based on user choice
if model_choice == "CodeLlama":
model, tokenizer = codellama_model, codellama_tokenizer
else:
model, tokenizer = mistral_model, mistral_tokenizer
prompt = format_input_prompt(schema, question)
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id
)
# Decode generated text
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract SQL query
sql_match = re.search(r'```sql\s*(.*?)\s*```', full_response, re.DOTALL)
sql_query = sql_match.group(1).strip() if sql_match else None
# Extract explanation
explanation_match = re.search(r'Explanation:\s*(.*?)($|\n\n)', full_response, re.DOTALL)
explanation = explanation_match.group(1).strip() if explanation_match else None
return {
"query": sql_query or "SQL query extraction failed.",
"explanation": explanation or "Explanation not found.",
"full_response": full_response
}
# βœ… Function to execute SQL query (Optional)
def execute_sql_query(sql_query):
"""
Runs the generated SQL query on a sample SQLite database.
(Replace with a real DB connection if needed)
"""
try:
conn = sqlite3.connect(":memory:") # Temporary SQLite DB
cursor = conn.cursor()
cursor.execute(sql_query)
result = cursor.fetchall()
conn.close()
return result if result else "Query executed successfully (No output rows)."
except Exception as e:
return f"Error executing SQL: {str(e)}"
# βœ… Gradio UI function
def gradio_generate_sql(model_choice, schema, question, run_sql):
"""
Takes model selection, schema & question as input and returns SQL + explanation.
Optionally executes the SQL if requested.
"""
result = generate_sql_with_explanation(model_choice, schema, question)
sql_query = result["query"]
if run_sql:
execution_result = execute_sql_query(sql_query)
return sql_query, result["explanation"], execution_result
return sql_query, result["explanation"], "SQL execution not requested."
# βœ… Gradio UI
iface = gr.Interface(
fn=gradio_generate_sql,
inputs=[
gr.Dropdown(["CodeLlama", "Mistral"], label="Choose Model"),
gr.Textbox(label="Enter Database Schema", lines=10),
gr.Textbox(label="Enter your Question"),
gr.Checkbox(label="Run SQL Query?", value=False),
],
outputs=[
gr.Code(label="Generated SQL Query", language="sql"), # SQL Syntax Highlighting
gr.Textbox(label="Explanation", lines=5),
gr.Textbox(label="SQL Execution Result", lines=5),
],
title="SQL Query Generator with Execution",
description="Select a model, enter your database schema and question. Optionally, execute the generated SQL query.",
)
# βœ… Launch Gradio
iface.launch()