srishtirai commited on
Commit
81657a9
Β·
verified Β·
1 Parent(s): 1bf35f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -4,11 +4,15 @@ import torch
4
  import sqlite3
5
  from transformers import AutoTokenizer, AutoModelForCausalLM
6
  from peft import PeftModel, PeftConfig
 
 
 
7
 
8
  # βœ… Load fine-tuned models from Hugging Face Model Hub instead of Kaggle paths
9
  codellama_model_path = "srishtirai/codellama-sql-finetuned" # Upload to HF Model Hub
10
  mistral_model_path = "srishtirai/mistral-sql-finetuned" # Upload to HF Model Hub
11
 
 
12
  def load_model(model_path):
13
  tokenizer = AutoTokenizer.from_pretrained(model_path)
14
  tokenizer.pad_token = tokenizer.eos_token
@@ -16,15 +20,19 @@ def load_model(model_path):
16
 
17
  peft_config = PeftConfig.from_pretrained(model_path)
18
  base_model_name = peft_config.base_model_name_or_path
 
19
  base_model = AutoModelForCausalLM.from_pretrained(
20
  base_model_name,
21
- torch_dtype=torch.float16,
22
- device_map="auto"
 
23
  )
 
24
  model = PeftModel.from_pretrained(base_model, model_path)
25
  model.eval()
26
  return model, tokenizer
27
 
 
28
  # βœ… Load both models from Hugging Face
29
  codellama_model, codellama_tokenizer = load_model(codellama_model_path)
30
  mistral_model, mistral_tokenizer = load_model(mistral_model_path)
 
4
  import sqlite3
5
  from transformers import AutoTokenizer, AutoModelForCausalLM
6
  from peft import PeftModel, PeftConfig
7
+ import torch
8
+ import os
9
+ os.makedirs("offload", exist_ok=True)
10
 
11
  # βœ… Load fine-tuned models from Hugging Face Model Hub instead of Kaggle paths
12
  codellama_model_path = "srishtirai/codellama-sql-finetuned" # Upload to HF Model Hub
13
  mistral_model_path = "srishtirai/mistral-sql-finetuned" # Upload to HF Model Hub
14
 
15
+
16
  def load_model(model_path):
17
  tokenizer = AutoTokenizer.from_pretrained(model_path)
18
  tokenizer.pad_token = tokenizer.eos_token
 
20
 
21
  peft_config = PeftConfig.from_pretrained(model_path)
22
  base_model_name = peft_config.base_model_name_or_path
23
+
24
  base_model = AutoModelForCausalLM.from_pretrained(
25
  base_model_name,
26
+ torch_dtype=torch.float16, # Use FP16 to save memory
27
+ device_map="auto", # Automatically allocate layers to CPU/GPU
28
+ offload_folder="offload" # βœ… Offload large layers to disk
29
  )
30
+
31
  model = PeftModel.from_pretrained(base_model, model_path)
32
  model.eval()
33
  return model, tokenizer
34
 
35
+
36
  # βœ… Load both models from Hugging Face
37
  codellama_model, codellama_tokenizer = load_model(codellama_model_path)
38
  mistral_model, mistral_tokenizer = load_model(mistral_model_path)