Spaces:
Runtime error
Runtime error
File size: 5,702 Bytes
90de3f7 d4125bf 55215ba d4125bf f24c38b 90de3f7 df181e8 55215ba 90de3f7 55215ba 81657a9 d4125bf 81657a9 55215ba d4125bf 55215ba df181e8 55215ba d4125bf 81657a9 d4125bf 55215ba d4125bf 55215ba d4125bf 55215ba d4125bf 90de3f7 d4125bf 90de3f7 d4125bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import re
import torch
import sqlite3 # Can be replaced with other DB connections
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
from huggingface_hub import login
# β
Retrieve Hugging Face token from environment variable (Secret)
HF_TOKEN = os.getenv("HF_TOKEN") # β
Now using stored secret, not hardcoded!
if HF_TOKEN is None:
raise ValueError("β ERROR: Hugging Face token is missing! Please set HF_TOKEN in Hugging Face Secrets.")
# β
Authenticate with Hugging Face
login(token=HF_TOKEN)
# β
Ensure offload directory exists
os.makedirs("offload", exist_ok=True)
# β
Load fine-tuned models from Hugging Face Model Hub
codellama_model_path = "srishtirai/codellama-sql-finetuned"
mistral_model_path = "srishtirai/mistral-sql-finetuned"
def load_model(model_path):
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
peft_config = PeftConfig.from_pretrained(model_path)
base_model_name = peft_config.base_model_name_or_path
# β
Load base model with offloading & low-memory optimization
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16, # Use FP16 to reduce memory usage
device_map="auto", # Automatically distribute across CPU/GPU
offload_folder="offload", # β
Prevents memory crashes
use_auth_token=HF_TOKEN # β
Authenticate model loading
)
# β
Load LoRA adapter with `is_trainable=False`
model = PeftModel.from_pretrained(
base_model,
model_path,
is_trainable=False # β
Fixes LoRA adapter loading issues
)
model.eval()
return model, tokenizer
# β
Load both models from Hugging Face
codellama_model, codellama_tokenizer = load_model(codellama_model_path)
mistral_model, mistral_tokenizer = load_model(mistral_model_path)
# β
Function to format input
def format_input_prompt(schema, question):
return f"""### Context:
{schema}
### Question:
{question}
### Response:
Here's the SQL query:
"""
# β
Function to generate SQL with explanation
def generate_sql_with_explanation(model_choice, schema, question, max_new_tokens=512, temperature=0.7):
"""
Generate SQL query and explanation based on the selected model.
"""
# Select model based on user choice
if model_choice == "CodeLlama":
model, tokenizer = codellama_model, codellama_tokenizer
else:
model, tokenizer = mistral_model, mistral_tokenizer
prompt = format_input_prompt(schema, question)
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id
)
# Decode generated text
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract SQL query
sql_match = re.search(r'```sql\s*(.*?)\s*```', full_response, re.DOTALL)
sql_query = sql_match.group(1).strip() if sql_match else None
# Extract explanation
explanation_match = re.search(r'Explanation:\s*(.*?)($|\n\n)', full_response, re.DOTALL)
explanation = explanation_match.group(1).strip() if explanation_match else None
return {
"query": sql_query or "SQL query extraction failed.",
"explanation": explanation or "Explanation not found.",
"full_response": full_response
}
# β
Function to execute SQL query (if database connection is available)
def execute_sql_query(sql_query):
"""
Runs the generated SQL query on a sample SQLite database.
(You can replace SQLite with a connection to a real database)
"""
try:
conn = sqlite3.connect(":memory:") # Temporary SQLite DB (Replace with actual DB connection)
cursor = conn.cursor()
cursor.execute(sql_query)
result = cursor.fetchall()
conn.close()
return result if result else "Query executed successfully (No output rows)."
except Exception as e:
return f"Error executing SQL: {str(e)}"
# β
Gradio UI function
def gradio_generate_sql(model_choice, schema, question, run_sql):
"""
Takes model selection, schema & question as input and returns SQL + explanation.
Optionally executes the SQL if requested.
"""
result = generate_sql_with_explanation(model_choice, schema, question)
sql_query = result["query"]
if run_sql:
execution_result = execute_sql_query(sql_query)
return sql_query, result["explanation"], execution_result
return sql_query, result["explanation"], "SQL execution not requested."
# β
Gradio UI
iface = gr.Interface(
fn=gradio_generate_sql,
inputs=[
gr.Dropdown(["CodeLlama", "Mistral"], label="Choose Model"),
gr.Textbox(label="Enter Database Schema", lines=10),
gr.Textbox(label="Enter your Question"),
gr.Checkbox(label="Run SQL Query?", value=False),
],
outputs=[
gr.Code(label="Generated SQL Query", language="sql"), # SQL Syntax Highlighting
gr.Textbox(label="Explanation", lines=5),
gr.Textbox(label="SQL Execution Result", lines=5),
],
title="SQL Query Generator with Execution",
description="Select a model, enter your database schema and question. Optionally, execute the generated SQL query.",
)
# β
Launch Gradio
iface.launch() |