GenDoc_AI / app.py
sreelekhaputta2's picture
Update app.py
2c10b07 verified
raw
history blame
9.95 kB
import os
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import tensorflow as tf
import gradio as gr
from fpdf import FPDF
import pandas as pd
# Load Features from CSV (curate a subset for demo clarity)
features_df = pd.read_csv("Feature-Description.csv")
key_features = [
"Automatic Code Analysis",
"Context-Aware Documentation",
"Real-Time Updates",
"Dependency Mapping",
"API Documentation",
"Test Suite Generation",
"UML Diagram Generation",
"Bug/Issue Identification",
"Natural Language Explanations",
"Customizable Output Formats",
"Language Agnostic",
"Automated Refreshes",
"Analytics and Insights",
"Automated Code Summaries"
]
features_list = [row for row in features_df.to_dict(orient="records") if row["Feature"] in key_features]
def features_html():
html = "<ul style='margin:0; padding-left:1.2em; font-size:16px; color:#f4f6fa;'>"
for f in features_list:
html += f"<li><b>{f['Feature']}</b>: {f['Description']}</li>"
html += "</ul>"
return html
model_name = "Salesforce/codet5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
class CodeComplexityScorer(tf.keras.Model):
def __init__(self):
super().__init__()
self.dense1 = tf.keras.layers.Dense(32, activation='relu')
self.dense2 = tf.keras.layers.Dense(1, activation='sigmoid')
def call(self, inputs):
x = self.dense1(inputs)
score = self.dense2(x)
return score
complexity_model = CodeComplexityScorer()
def extract_code_features(code_text):
length = len(code_text)
lines = code_text.count('\n') + 1
words = code_text.split()
avg_word_len = sum(len(w) for w in words) / (len(words) + 1)
features = tf.constant([[length/1000, lines/50, avg_word_len/20]], dtype=tf.float32)
return features
LANG_PROMPTS = {
"Python": "summarize Python code:",
"JavaScript": "summarize JavaScript code:",
"Java": "summarize Java code:",
"Other": "summarize code:",
}
def automatic_code_analysis(code_text):
return f"Code contains {code_text.count(chr(10))+1} lines and {len(code_text)} characters."
def context_aware_documentation(code_text):
return "Generates context-aware, readable documentation (demo placeholder)."
def bug_issue_identification(code_text):
return "No obvious issues detected (demo placeholder)."
def automated_code_summaries(code_text):
return "Provides concise summaries of code modules (demo placeholder)."
feature_functions = {
"Automatic Code Analysis": automatic_code_analysis,
"Context-Aware Documentation": context_aware_documentation,
"Bug/Issue Identification": bug_issue_identification,
"Automated Code Summaries": automated_code_summaries,
}
def generate_documentation(code_text, language, export_format, selected_features):
features = extract_code_features(code_text)
complexity_score = complexity_model(features).numpy()[0][0]
prompt = LANG_PROMPTS.get(language, LANG_PROMPTS["Other"])
input_text = f"{prompt} {code_text.strip()}"
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
summary_ids = model.generate(inputs, max_length=128, num_beams=5, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
extra_sections = ""
for feature in selected_features:
if feature in feature_functions:
extra_sections += f"\n**{feature}:**\n{feature_functions[feature](code_text)}"
doc_output = f"""### AI-Generated Documentation
{summary}
**Code Complexity Score:** {complexity_score:.2f} (0=low,1=high)
{extra_sections}
"""
if export_format == "Markdown":
return doc_output
elif export_format == "PDF":
pdf_filename = "/tmp/generated_doc.pdf"
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for line in doc_output.split('\n'):
pdf.cell(0, 10, txt=line, ln=True)
pdf.output(pdf_filename)
return pdf_filename
else:
return doc_output
def process_uploaded_file(uploaded_file, language, export_format, selected_features):
code_bytes = uploaded_file.read()
code_text = code_bytes.decode("utf-8", errors="ignore")
return generate_documentation(code_text, language, export_format, selected_features)
# --- CSS: Use .gradio-container for full-page background image ---
custom_css = """
.gradio-container {
background-image: url('https://media.istockphoto.com/photos/programming-code-abstract-technology-background-of-software-developer-picture-id1201405775?b=1&k=20&m=1201405775&s=170667a&w=0&h=XZ-tUfHvW5IRT30nMm7bAbbWrqkGQ-WT8XSS8Pab-eA=');
background-repeat: no-repeat;
background-position: center center;
background-attachment: fixed;
background-size: cover;
min-height: 100vh;
}
#container {
background: rgba(16, 24, 40, 0.85);
border-radius: 22px;
padding: 2.5rem 3.5rem;
max-width: 900px;
margin: 2rem auto 3rem auto;
box-shadow: 0 12px 48px 0 rgba(60,120,220,0.28), 0 1.5px 12px 0 rgba(0,0,0,0.15);
color: #f4f6fa !important;
backdrop-filter: blur(7px);
border: 2.5px solid rgba(0,255,255,0.10);
}
#animated-header {
font-size: 2.6em !important;
font-weight: 900;
text-align: center;
margin-bottom: 1em;
background: linear-gradient(270deg, #00f2fe, #4facfe, #43e97b, #fa709a, #fee140, #00f2fe);
background-size: 800% 800%;
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
animation: gradientShift 12s ease-in-out infinite;
letter-spacing: 2px;
text-shadow: 0 2px 8px rgba(0,255,255,0.18);
}
@keyframes gradientShift {
0%{background-position:0% 50%;}
50%{background-position:100% 50%;}
100%{background-position:0% 50%;}
}
#feature-panel {
background: rgba(34, 49, 63, 0.95);
border-radius: 14px;
padding: 1.2rem 1.8rem;
margin-bottom: 1.5rem;
box-shadow: 0 4px 18px rgba(0,255,255,0.10);
max-height: 200px;
overflow-y: auto;
font-size: 1.13em;
line-height: 1.5em;
color: #f4f6fa !important;
border: 2px solid #00f2fe;
animation: fadeInUp 1.2s ease forwards, neon-glow 2.5s infinite alternate;
}
@keyframes fadeInUp {
from {opacity: 0; transform: translateY(20px);}
to {opacity: 1; transform: translateY(0);}
}
@keyframes neon-glow {
0% { box-shadow: 0 0 8px #00f2fe, 0 0 16px #00f2fe70; border-color: #00f2fe;}
100% { box-shadow: 0 0 16px #43e97b, 0 0 32px #43e97b70; border-color: #43e97b;}
}
#generate-btn {
background: linear-gradient(90deg, #43e97b, #38f9d7, #00f2fe);
color: #192a56 !important;
font-weight: 800;
border-radius: 14px;
padding: 0.9em 2.2em;
font-size: 1.25em;
border: none;
box-shadow: 0 6px 24px 0 rgba(0,255,255,0.22);
transition: all 0.3s cubic-bezier(.4,2,.6,1);
letter-spacing: 1px;
outline: none;
}
#generate-btn:hover {
background: linear-gradient(90deg, #fa709a, #fee140);
color: #192a56 !important;
box-shadow: 0 8px 32px rgba(250,112,154,0.22);
transform: scale(1.06);
cursor: pointer;
}
#credits {
text-align: center;
margin-top: 2.5rem;
font-size: 1.15em;
color: #fee140;
font-weight: 800;
letter-spacing: 0.08em;
animation: fadeIn 2s ease forwards;
text-shadow: 0 2px 8px #fa709a50;
}
@media (max-width: 600px) {
#container {
padding: 1rem 0.5rem;
margin: 1rem;
}
#animated-header {
font-size: 1.4em !important;
}
#feature-panel {
padding: 0.7rem 0.7rem;
font-size: 1em;
}
}
"""
with gr.Blocks(css=custom_css, elem_id="container") as demo:
gr.HTML("<div id='animated-header'>AI-Powered Code Documentation Generator</div>")
with gr.Row():
gr.HTML(f"<div id='feature-panel'><b>Supported Features (scroll if needed):</b>{features_html()}</div>")
file_input = gr.File(label="Upload Code File (.py, .js, .java)", file_types=[".py", ".js", ".java"])
code_input = gr.Textbox(label="Or Paste Code Here", lines=8, max_lines=15, placeholder="Paste your code snippet here...")
language_dropdown = gr.Dropdown(label="Select Language", choices=["Python", "JavaScript", "Java", "Other"], value="Python")
export_dropdown = gr.Dropdown(label="Export Format", choices=["Markdown", "PDF"], value="Markdown")
feature_options = gr.CheckboxGroup(
label="Select Features to Include",
choices=[f["Feature"] for f in features_list],
value=["Automatic Code Analysis", "Context-Aware Documentation", "Bug/Issue Identification"],
interactive=True,
container=False,
show_label=True,
)
generate_btn = gr.Button("Generate Documentation", elem_id="generate-btn")
output_box = gr.Textbox(label="Generated Documentation", lines=10, max_lines=20, interactive=False, show_copy_button=True)
pdf_output = gr.File(label="Download PDF", visible=False)
gr.HTML("<div id='credits'>Credits: Sreelekha Putta</div>")
def on_generate(file_obj, code_str, language, export_format, selected_features):
if file_obj is not None:
result = process_uploaded_file(file_obj, language, export_format, selected_features)
elif code_str.strip() != "":
result = generate_documentation(code_str, language, export_format, selected_features)
else:
return "Please upload a file or paste code to generate documentation.", None
if export_format == "PDF":
return None, gr.update(value=result, visible=True)
else:
return result, gr.update(visible=False)
generate_btn.click(
on_generate,
inputs=[file_input, code_input, language_dropdown, export_dropdown, feature_options],
outputs=[output_box, pdf_output]
)
demo.launch(share=True)