Spaces:
Running
Running
File size: 9,946 Bytes
ae23fa1 2c10b07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import tensorflow as tf
import gradio as gr
from fpdf import FPDF
import pandas as pd
# Load Features from CSV (curate a subset for demo clarity)
features_df = pd.read_csv("Feature-Description.csv")
key_features = [
"Automatic Code Analysis",
"Context-Aware Documentation",
"Real-Time Updates",
"Dependency Mapping",
"API Documentation",
"Test Suite Generation",
"UML Diagram Generation",
"Bug/Issue Identification",
"Natural Language Explanations",
"Customizable Output Formats",
"Language Agnostic",
"Automated Refreshes",
"Analytics and Insights",
"Automated Code Summaries"
]
features_list = [row for row in features_df.to_dict(orient="records") if row["Feature"] in key_features]
def features_html():
html = "<ul style='margin:0; padding-left:1.2em; font-size:16px; color:#f4f6fa;'>"
for f in features_list:
html += f"<li><b>{f['Feature']}</b>: {f['Description']}</li>"
html += "</ul>"
return html
model_name = "Salesforce/codet5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
class CodeComplexityScorer(tf.keras.Model):
def __init__(self):
super().__init__()
self.dense1 = tf.keras.layers.Dense(32, activation='relu')
self.dense2 = tf.keras.layers.Dense(1, activation='sigmoid')
def call(self, inputs):
x = self.dense1(inputs)
score = self.dense2(x)
return score
complexity_model = CodeComplexityScorer()
def extract_code_features(code_text):
length = len(code_text)
lines = code_text.count('\n') + 1
words = code_text.split()
avg_word_len = sum(len(w) for w in words) / (len(words) + 1)
features = tf.constant([[length/1000, lines/50, avg_word_len/20]], dtype=tf.float32)
return features
LANG_PROMPTS = {
"Python": "summarize Python code:",
"JavaScript": "summarize JavaScript code:",
"Java": "summarize Java code:",
"Other": "summarize code:",
}
def automatic_code_analysis(code_text):
return f"Code contains {code_text.count(chr(10))+1} lines and {len(code_text)} characters."
def context_aware_documentation(code_text):
return "Generates context-aware, readable documentation (demo placeholder)."
def bug_issue_identification(code_text):
return "No obvious issues detected (demo placeholder)."
def automated_code_summaries(code_text):
return "Provides concise summaries of code modules (demo placeholder)."
feature_functions = {
"Automatic Code Analysis": automatic_code_analysis,
"Context-Aware Documentation": context_aware_documentation,
"Bug/Issue Identification": bug_issue_identification,
"Automated Code Summaries": automated_code_summaries,
}
def generate_documentation(code_text, language, export_format, selected_features):
features = extract_code_features(code_text)
complexity_score = complexity_model(features).numpy()[0][0]
prompt = LANG_PROMPTS.get(language, LANG_PROMPTS["Other"])
input_text = f"{prompt} {code_text.strip()}"
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
summary_ids = model.generate(inputs, max_length=128, num_beams=5, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
extra_sections = ""
for feature in selected_features:
if feature in feature_functions:
extra_sections += f"\n**{feature}:**\n{feature_functions[feature](code_text)}"
doc_output = f"""### AI-Generated Documentation
{summary}
**Code Complexity Score:** {complexity_score:.2f} (0=low,1=high)
{extra_sections}
"""
if export_format == "Markdown":
return doc_output
elif export_format == "PDF":
pdf_filename = "/tmp/generated_doc.pdf"
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for line in doc_output.split('\n'):
pdf.cell(0, 10, txt=line, ln=True)
pdf.output(pdf_filename)
return pdf_filename
else:
return doc_output
def process_uploaded_file(uploaded_file, language, export_format, selected_features):
code_bytes = uploaded_file.read()
code_text = code_bytes.decode("utf-8", errors="ignore")
return generate_documentation(code_text, language, export_format, selected_features)
# --- CSS: Use .gradio-container for full-page background image ---
custom_css = """
.gradio-container {
background-image: url('https://media.istockphoto.com/photos/programming-code-abstract-technology-background-of-software-developer-picture-id1201405775?b=1&k=20&m=1201405775&s=170667a&w=0&h=XZ-tUfHvW5IRT30nMm7bAbbWrqkGQ-WT8XSS8Pab-eA=');
background-repeat: no-repeat;
background-position: center center;
background-attachment: fixed;
background-size: cover;
min-height: 100vh;
}
#container {
background: rgba(16, 24, 40, 0.85);
border-radius: 22px;
padding: 2.5rem 3.5rem;
max-width: 900px;
margin: 2rem auto 3rem auto;
box-shadow: 0 12px 48px 0 rgba(60,120,220,0.28), 0 1.5px 12px 0 rgba(0,0,0,0.15);
color: #f4f6fa !important;
backdrop-filter: blur(7px);
border: 2.5px solid rgba(0,255,255,0.10);
}
#animated-header {
font-size: 2.6em !important;
font-weight: 900;
text-align: center;
margin-bottom: 1em;
background: linear-gradient(270deg, #00f2fe, #4facfe, #43e97b, #fa709a, #fee140, #00f2fe);
background-size: 800% 800%;
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
animation: gradientShift 12s ease-in-out infinite;
letter-spacing: 2px;
text-shadow: 0 2px 8px rgba(0,255,255,0.18);
}
@keyframes gradientShift {
0%{background-position:0% 50%;}
50%{background-position:100% 50%;}
100%{background-position:0% 50%;}
}
#feature-panel {
background: rgba(34, 49, 63, 0.95);
border-radius: 14px;
padding: 1.2rem 1.8rem;
margin-bottom: 1.5rem;
box-shadow: 0 4px 18px rgba(0,255,255,0.10);
max-height: 200px;
overflow-y: auto;
font-size: 1.13em;
line-height: 1.5em;
color: #f4f6fa !important;
border: 2px solid #00f2fe;
animation: fadeInUp 1.2s ease forwards, neon-glow 2.5s infinite alternate;
}
@keyframes fadeInUp {
from {opacity: 0; transform: translateY(20px);}
to {opacity: 1; transform: translateY(0);}
}
@keyframes neon-glow {
0% { box-shadow: 0 0 8px #00f2fe, 0 0 16px #00f2fe70; border-color: #00f2fe;}
100% { box-shadow: 0 0 16px #43e97b, 0 0 32px #43e97b70; border-color: #43e97b;}
}
#generate-btn {
background: linear-gradient(90deg, #43e97b, #38f9d7, #00f2fe);
color: #192a56 !important;
font-weight: 800;
border-radius: 14px;
padding: 0.9em 2.2em;
font-size: 1.25em;
border: none;
box-shadow: 0 6px 24px 0 rgba(0,255,255,0.22);
transition: all 0.3s cubic-bezier(.4,2,.6,1);
letter-spacing: 1px;
outline: none;
}
#generate-btn:hover {
background: linear-gradient(90deg, #fa709a, #fee140);
color: #192a56 !important;
box-shadow: 0 8px 32px rgba(250,112,154,0.22);
transform: scale(1.06);
cursor: pointer;
}
#credits {
text-align: center;
margin-top: 2.5rem;
font-size: 1.15em;
color: #fee140;
font-weight: 800;
letter-spacing: 0.08em;
animation: fadeIn 2s ease forwards;
text-shadow: 0 2px 8px #fa709a50;
}
@media (max-width: 600px) {
#container {
padding: 1rem 0.5rem;
margin: 1rem;
}
#animated-header {
font-size: 1.4em !important;
}
#feature-panel {
padding: 0.7rem 0.7rem;
font-size: 1em;
}
}
"""
with gr.Blocks(css=custom_css, elem_id="container") as demo:
gr.HTML("<div id='animated-header'>AI-Powered Code Documentation Generator</div>")
with gr.Row():
gr.HTML(f"<div id='feature-panel'><b>Supported Features (scroll if needed):</b>{features_html()}</div>")
file_input = gr.File(label="Upload Code File (.py, .js, .java)", file_types=[".py", ".js", ".java"])
code_input = gr.Textbox(label="Or Paste Code Here", lines=8, max_lines=15, placeholder="Paste your code snippet here...")
language_dropdown = gr.Dropdown(label="Select Language", choices=["Python", "JavaScript", "Java", "Other"], value="Python")
export_dropdown = gr.Dropdown(label="Export Format", choices=["Markdown", "PDF"], value="Markdown")
feature_options = gr.CheckboxGroup(
label="Select Features to Include",
choices=[f["Feature"] for f in features_list],
value=["Automatic Code Analysis", "Context-Aware Documentation", "Bug/Issue Identification"],
interactive=True,
container=False,
show_label=True,
)
generate_btn = gr.Button("Generate Documentation", elem_id="generate-btn")
output_box = gr.Textbox(label="Generated Documentation", lines=10, max_lines=20, interactive=False, show_copy_button=True)
pdf_output = gr.File(label="Download PDF", visible=False)
gr.HTML("<div id='credits'>Credits: Sreelekha Putta</div>")
def on_generate(file_obj, code_str, language, export_format, selected_features):
if file_obj is not None:
result = process_uploaded_file(file_obj, language, export_format, selected_features)
elif code_str.strip() != "":
result = generate_documentation(code_str, language, export_format, selected_features)
else:
return "Please upload a file or paste code to generate documentation.", None
if export_format == "PDF":
return None, gr.update(value=result, visible=True)
else:
return result, gr.update(visible=False)
generate_btn.click(
on_generate,
inputs=[file_input, code_input, language_dropdown, export_dropdown, feature_options],
outputs=[output_box, pdf_output]
)
demo.launch(share=True)
|