Spaces:
Running
Running
Update app.py
Browse files"An AI-powered multi-language code documentation generator that produces clear, context-aware summaries and exports them in Markdown or PDF formats."
app.py
CHANGED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import tensorflow as tf
|
5 |
+
import gradio as gr
|
6 |
+
from fpdf import FPDF
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
# Load Features from CSV (curate a subset for demo clarity)
|
10 |
+
features_df = pd.read_csv("Feature-Description.csv")
|
11 |
+
key_features = [
|
12 |
+
"Automatic Code Analysis",
|
13 |
+
"Context-Aware Documentation",
|
14 |
+
"Real-Time Updates",
|
15 |
+
"Dependency Mapping",
|
16 |
+
"API Documentation",
|
17 |
+
"Test Suite Generation",
|
18 |
+
"UML Diagram Generation",
|
19 |
+
"Bug/Issue Identification",
|
20 |
+
"Natural Language Explanations",
|
21 |
+
"Customizable Output Formats",
|
22 |
+
"Language Agnostic",
|
23 |
+
"Automated Refreshes",
|
24 |
+
"Analytics and Insights",
|
25 |
+
"Automated Code Summaries"
|
26 |
+
]
|
27 |
+
features_list = [row for row in features_df.to_dict(orient="records") if row["Feature"] in key_features]
|
28 |
+
|
29 |
+
def features_html():
|
30 |
+
html = "<ul style='margin:0; padding-left:1.2em; font-size:16px; color:#f4f6fa;'>"
|
31 |
+
for f in features_list:
|
32 |
+
html += f"<li><b>{f['Feature']}</b>: {f['Description']}</li>"
|
33 |
+
html += "</ul>"
|
34 |
+
return html
|
35 |
+
|
36 |
+
model_name = "Salesforce/codet5-base"
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
38 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
39 |
+
|
40 |
+
class CodeComplexityScorer(tf.keras.Model):
|
41 |
+
def __init__(self):
|
42 |
+
super().__init__()
|
43 |
+
self.dense1 = tf.keras.layers.Dense(32, activation='relu')
|
44 |
+
self.dense2 = tf.keras.layers.Dense(1, activation='sigmoid')
|
45 |
+
def call(self, inputs):
|
46 |
+
x = self.dense1(inputs)
|
47 |
+
score = self.dense2(x)
|
48 |
+
return score
|
49 |
+
|
50 |
+
complexity_model = CodeComplexityScorer()
|
51 |
+
|
52 |
+
def extract_code_features(code_text):
|
53 |
+
length = len(code_text)
|
54 |
+
lines = code_text.count('\n') + 1
|
55 |
+
words = code_text.split()
|
56 |
+
avg_word_len = sum(len(w) for w in words) / (len(words) + 1)
|
57 |
+
features = tf.constant([[length/1000, lines/50, avg_word_len/20]], dtype=tf.float32)
|
58 |
+
return features
|
59 |
+
|
60 |
+
LANG_PROMPTS = {
|
61 |
+
"Python": "summarize Python code:",
|
62 |
+
"JavaScript": "summarize JavaScript code:",
|
63 |
+
"Java": "summarize Java code:",
|
64 |
+
"Other": "summarize code:",
|
65 |
+
}
|
66 |
+
|
67 |
+
def automatic_code_analysis(code_text):
|
68 |
+
return f"Code contains {code_text.count(chr(10))+1} lines and {len(code_text)} characters."
|
69 |
+
|
70 |
+
def context_aware_documentation(code_text):
|
71 |
+
return "Generates context-aware, readable documentation (demo placeholder)."
|
72 |
+
|
73 |
+
def bug_issue_identification(code_text):
|
74 |
+
return "No obvious issues detected (demo placeholder)."
|
75 |
+
|
76 |
+
def automated_code_summaries(code_text):
|
77 |
+
return "Provides concise summaries of code modules (demo placeholder)."
|
78 |
+
|
79 |
+
feature_functions = {
|
80 |
+
"Automatic Code Analysis": automatic_code_analysis,
|
81 |
+
"Context-Aware Documentation": context_aware_documentation,
|
82 |
+
"Bug/Issue Identification": bug_issue_identification,
|
83 |
+
"Automated Code Summaries": automated_code_summaries,
|
84 |
+
}
|
85 |
+
|
86 |
+
def generate_documentation(code_text, language, export_format, selected_features):
|
87 |
+
features = extract_code_features(code_text)
|
88 |
+
complexity_score = complexity_model(features).numpy()[0][0]
|
89 |
+
prompt = LANG_PROMPTS.get(language, LANG_PROMPTS["Other"])
|
90 |
+
input_text = f"{prompt} {code_text.strip()}"
|
91 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
92 |
+
summary_ids = model.generate(inputs, max_length=128, num_beams=5, early_stopping=True)
|
93 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
94 |
+
extra_sections = ""
|
95 |
+
for feature in selected_features:
|
96 |
+
if feature in feature_functions:
|
97 |
+
extra_sections += f"\n**{feature}:**\n{feature_functions[feature](code_text)}"
|
98 |
+
doc_output = f"""### AI-Generated Documentation
|
99 |
+
|
100 |
+
{summary}
|
101 |
+
|
102 |
+
**Code Complexity Score:** {complexity_score:.2f} (0=low,1=high)
|
103 |
+
{extra_sections}
|
104 |
+
"""
|
105 |
+
if export_format == "Markdown":
|
106 |
+
return doc_output
|
107 |
+
elif export_format == "PDF":
|
108 |
+
pdf_filename = "/tmp/generated_doc.pdf"
|
109 |
+
pdf = FPDF()
|
110 |
+
pdf.add_page()
|
111 |
+
pdf.set_font("Arial", size=12)
|
112 |
+
for line in doc_output.split('\n'):
|
113 |
+
pdf.cell(0, 10, txt=line, ln=True)
|
114 |
+
pdf.output(pdf_filename)
|
115 |
+
return pdf_filename
|
116 |
+
else:
|
117 |
+
return doc_output
|
118 |
+
|
119 |
+
def process_uploaded_file(uploaded_file, language, export_format, selected_features):
|
120 |
+
code_bytes = uploaded_file.read()
|
121 |
+
code_text = code_bytes.decode("utf-8", errors="ignore")
|
122 |
+
return generate_documentation(code_text, language, export_format, selected_features)
|
123 |
+
|
124 |
+
# --- CSS: Use .gradio-container for full-page background image ---
|
125 |
+
custom_css = """
|
126 |
+
.gradio-container {
|
127 |
+
background-image: url('https://media.istockphoto.com/photos/programming-code-abstract-technology-background-of-software-developer-picture-id1201405775?b=1&k=20&m=1201405775&s=170667a&w=0&h=XZ-tUfHvW5IRT30nMm7bAbbWrqkGQ-WT8XSS8Pab-eA=');
|
128 |
+
background-repeat: no-repeat;
|
129 |
+
background-position: center center;
|
130 |
+
background-attachment: fixed;
|
131 |
+
background-size: cover;
|
132 |
+
min-height: 100vh;
|
133 |
+
}
|
134 |
+
#container {
|
135 |
+
background: rgba(16, 24, 40, 0.85);
|
136 |
+
border-radius: 22px;
|
137 |
+
padding: 2.5rem 3.5rem;
|
138 |
+
max-width: 900px;
|
139 |
+
margin: 2rem auto 3rem auto;
|
140 |
+
box-shadow: 0 12px 48px 0 rgba(60,120,220,0.28), 0 1.5px 12px 0 rgba(0,0,0,0.15);
|
141 |
+
color: #f4f6fa !important;
|
142 |
+
backdrop-filter: blur(7px);
|
143 |
+
border: 2.5px solid rgba(0,255,255,0.10);
|
144 |
+
}
|
145 |
+
#animated-header {
|
146 |
+
font-size: 2.6em !important;
|
147 |
+
font-weight: 900;
|
148 |
+
text-align: center;
|
149 |
+
margin-bottom: 1em;
|
150 |
+
background: linear-gradient(270deg, #00f2fe, #4facfe, #43e97b, #fa709a, #fee140, #00f2fe);
|
151 |
+
background-size: 800% 800%;
|
152 |
+
-webkit-background-clip: text;
|
153 |
+
-webkit-text-fill-color: transparent;
|
154 |
+
animation: gradientShift 12s ease-in-out infinite;
|
155 |
+
letter-spacing: 2px;
|
156 |
+
text-shadow: 0 2px 8px rgba(0,255,255,0.18);
|
157 |
+
}
|
158 |
+
@keyframes gradientShift {
|
159 |
+
0%{background-position:0% 50%;}
|
160 |
+
50%{background-position:100% 50%;}
|
161 |
+
100%{background-position:0% 50%;}
|
162 |
+
}
|
163 |
+
#feature-panel {
|
164 |
+
background: rgba(34, 49, 63, 0.95);
|
165 |
+
border-radius: 14px;
|
166 |
+
padding: 1.2rem 1.8rem;
|
167 |
+
margin-bottom: 1.5rem;
|
168 |
+
box-shadow: 0 4px 18px rgba(0,255,255,0.10);
|
169 |
+
max-height: 200px;
|
170 |
+
overflow-y: auto;
|
171 |
+
font-size: 1.13em;
|
172 |
+
line-height: 1.5em;
|
173 |
+
color: #f4f6fa !important;
|
174 |
+
border: 2px solid #00f2fe;
|
175 |
+
animation: fadeInUp 1.2s ease forwards, neon-glow 2.5s infinite alternate;
|
176 |
+
}
|
177 |
+
@keyframes fadeInUp {
|
178 |
+
from {opacity: 0; transform: translateY(20px);}
|
179 |
+
to {opacity: 1; transform: translateY(0);}
|
180 |
+
}
|
181 |
+
@keyframes neon-glow {
|
182 |
+
0% { box-shadow: 0 0 8px #00f2fe, 0 0 16px #00f2fe70; border-color: #00f2fe;}
|
183 |
+
100% { box-shadow: 0 0 16px #43e97b, 0 0 32px #43e97b70; border-color: #43e97b;}
|
184 |
+
}
|
185 |
+
#generate-btn {
|
186 |
+
background: linear-gradient(90deg, #43e97b, #38f9d7, #00f2fe);
|
187 |
+
color: #192a56 !important;
|
188 |
+
font-weight: 800;
|
189 |
+
border-radius: 14px;
|
190 |
+
padding: 0.9em 2.2em;
|
191 |
+
font-size: 1.25em;
|
192 |
+
border: none;
|
193 |
+
box-shadow: 0 6px 24px 0 rgba(0,255,255,0.22);
|
194 |
+
transition: all 0.3s cubic-bezier(.4,2,.6,1);
|
195 |
+
letter-spacing: 1px;
|
196 |
+
outline: none;
|
197 |
+
}
|
198 |
+
#generate-btn:hover {
|
199 |
+
background: linear-gradient(90deg, #fa709a, #fee140);
|
200 |
+
color: #192a56 !important;
|
201 |
+
box-shadow: 0 8px 32px rgba(250,112,154,0.22);
|
202 |
+
transform: scale(1.06);
|
203 |
+
cursor: pointer;
|
204 |
+
}
|
205 |
+
#credits {
|
206 |
+
text-align: center;
|
207 |
+
margin-top: 2.5rem;
|
208 |
+
font-size: 1.15em;
|
209 |
+
color: #fee140;
|
210 |
+
font-weight: 800;
|
211 |
+
letter-spacing: 0.08em;
|
212 |
+
animation: fadeIn 2s ease forwards;
|
213 |
+
text-shadow: 0 2px 8px #fa709a50;
|
214 |
+
}
|
215 |
+
@media (max-width: 600px) {
|
216 |
+
#container {
|
217 |
+
padding: 1rem 0.5rem;
|
218 |
+
margin: 1rem;
|
219 |
+
}
|
220 |
+
#animated-header {
|
221 |
+
font-size: 1.4em !important;
|
222 |
+
}
|
223 |
+
#feature-panel {
|
224 |
+
padding: 0.7rem 0.7rem;
|
225 |
+
font-size: 1em;
|
226 |
+
}
|
227 |
+
}
|
228 |
+
"""
|
229 |
+
|
230 |
+
with gr.Blocks(css=custom_css, elem_id="container") as demo:
|
231 |
+
gr.HTML("<div id='animated-header'>AI-Powered Code Documentation Generator</div>")
|
232 |
+
with gr.Row():
|
233 |
+
gr.HTML(f"<div id='feature-panel'><b>Supported Features (scroll if needed):</b>{features_html()}</div>")
|
234 |
+
file_input = gr.File(label="Upload Code File (.py, .js, .java)", file_types=[".py", ".js", ".java"])
|
235 |
+
code_input = gr.Textbox(label="Or Paste Code Here", lines=8, max_lines=15, placeholder="Paste your code snippet here...")
|
236 |
+
language_dropdown = gr.Dropdown(label="Select Language", choices=["Python", "JavaScript", "Java", "Other"], value="Python")
|
237 |
+
export_dropdown = gr.Dropdown(label="Export Format", choices=["Markdown", "PDF"], value="Markdown")
|
238 |
+
feature_options = gr.CheckboxGroup(
|
239 |
+
label="Select Features to Include",
|
240 |
+
choices=[f["Feature"] for f in features_list],
|
241 |
+
value=["Automatic Code Analysis", "Context-Aware Documentation", "Bug/Issue Identification"],
|
242 |
+
interactive=True,
|
243 |
+
container=False,
|
244 |
+
show_label=True,
|
245 |
+
)
|
246 |
+
generate_btn = gr.Button("Generate Documentation", elem_id="generate-btn")
|
247 |
+
output_box = gr.Textbox(label="Generated Documentation", lines=10, max_lines=20, interactive=False, show_copy_button=True)
|
248 |
+
pdf_output = gr.File(label="Download PDF", visible=False)
|
249 |
+
gr.HTML("<div id='credits'>Credits: Sreelekha Putta</div>")
|
250 |
+
|
251 |
+
def on_generate(file_obj, code_str, language, export_format, selected_features):
|
252 |
+
if file_obj is not None:
|
253 |
+
result = process_uploaded_file(file_obj, language, export_format, selected_features)
|
254 |
+
elif code_str.strip() != "":
|
255 |
+
result = generate_documentation(code_str, language, export_format, selected_features)
|
256 |
+
else:
|
257 |
+
return "Please upload a file or paste code to generate documentation.", None
|
258 |
+
if export_format == "PDF":
|
259 |
+
return None, gr.update(value=result, visible=True)
|
260 |
+
else:
|
261 |
+
return result, gr.update(visible=False)
|
262 |
+
|
263 |
+
generate_btn.click(
|
264 |
+
on_generate,
|
265 |
+
inputs=[file_input, code_input, language_dropdown, export_dropdown, feature_options],
|
266 |
+
outputs=[output_box, pdf_output]
|
267 |
+
)
|
268 |
+
|
269 |
+
demo.launch()
|