File size: 7,922 Bytes
3079b0f
a305086
 
 
 
 
 
3079b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a305086
 
 
3079b0f
 
 
a305086
 
 
 
 
 
 
3079b0f
 
 
 
 
 
a305086
3079b0f
 
 
 
 
 
 
 
a305086
 
3079b0f
 
 
 
a305086
3079b0f
 
a305086
 
 
 
 
3079b0f
a305086
 
3079b0f
 
 
 
 
 
 
 
a305086
3079b0f
a305086
 
 
3079b0f
a305086
 
 
3079b0f
a305086
 
 
 
 
3079b0f
 
 
 
a305086
 
3079b0f
 
a305086
 
 
3079b0f
 
 
a305086
 
 
3079b0f
 
a305086
 
 
 
 
 
3079b0f
a305086
 
 
 
 
 
 
 
 
 
 
 
3079b0f
a305086
83a2d42
 
 
 
 
 
 
 
 
 
3079b0f
 
 
a305086
 
 
3079b0f
 
a305086
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Updated multi-agent UI generation system with custom fine-tuned LoRA adapters

import streamlit as st
import time
import base64
from typing import Dict, List, TypedDict
from langgraph.graph import StateGraph, END
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel, PeftConfig
import torch

st.set_page_config(page_title="Multi-Agent Collaboration", layout="wide")

# Agent model loading config
AGENT_MODEL_CONFIG = {
    "product_manager": {
        "base": "mistralai/Mistral-7B-Instruct-v0.2",
        "adapter": "spandana30/product-manager-mistral"
    },
    "project_manager": {
        "base": "google/gemma-1.1-7b-it",
        "adapter": "spandana30/project-manager-gemma"
    },
    "software_architect": {
        "base": "cohere/command-r",  # update if you have a local base version
        "adapter": "spandana30/software-architect-cohere"
    },
    "software_engineer": {
        "base": "codellama/CodeLlama-7b-Instruct-hf",
        "adapter": "spandana30/software-engineer-codellama"
    },
    "qa": {
        "base": "codellama/CodeLlama-7b-Instruct-hf",
        "adapter": "spandana30/software-engineer-codellama"
    },
}

@st.cache_resource

def load_agent_model(base_id, adapter_id):
    base_model = AutoModelForCausalLM.from_pretrained(
        base_id, torch_dtype=torch.float16, device_map="auto"
    )
    model = PeftModel.from_pretrained(base_model, adapter_id)
    tokenizer = AutoTokenizer.from_pretrained(adapter_id)
    return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024)

AGENT_PIPELINES = {
    role: load_agent_model(cfg["base"], cfg["adapter"])
    for role, cfg in AGENT_MODEL_CONFIG.items()
}

class AgentState(TypedDict):
    messages: List[Dict[str, str]]
    user_request: str
    refined_request: str
    scoped_request: str
    design_specs: str
    html: str
    feedback: str
    iteration: int
    done: bool
    timings: Dict[str, float]

def run_pipeline(role: str, prompt: str):
    response = AGENT_PIPELINES[role](prompt, do_sample=False)[0]['generated_text']
    return response.strip()

PROMPTS = {
    "product_manager": """You're a Product Manager. Refine and clarify this request:
{user_request}
Ensure it's clear, feasible, and user-focused. Output the revised request only.""",
    "project_manager": """You're a Project Manager. Given this refined request:
{refined_request}
Break it down into scope and constraints. Output the scoped request only.""",
    "designer": """You're a UI designer. Create design specs for:
{scoped_request}
Include color palette, font, layout, and component styles. No code.""",
    "software_engineer": """Create a full HTML page with embedded CSS for:
{design_specs}
Requirements:
- Semantic, responsive HTML
- Embedded CSS in <style> tag
- Output complete HTML only.""",
    "qa": """Review this webpage:
{html}
Is it visually appealing, responsive, and functional? Reply "APPROVED" or suggest improvements."""
}

def time_agent(agent_func, state: AgentState, label: str):
    start = time.time()
    result = agent_func(state)
    result["timings"] = state["timings"]
    result["timings"][label] = time.time() - start
    return result

def product_manager_agent(state: AgentState):
    revised = run_pipeline("product_manager", PROMPTS["product_manager"].format(user_request=state["user_request"]))
    return {"refined_request": revised, "messages": state["messages"] + [{"role": "product_manager", "content": revised}]}

def project_manager_agent(state: AgentState):
    scoped = run_pipeline("project_manager", PROMPTS["project_manager"].format(refined_request=state["refined_request"]))
    return {"scoped_request": scoped, "messages": state["messages"] + [{"role": "project_manager", "content": scoped}]}

def designer_agent(state: AgentState):
    specs = run_pipeline("product_manager", PROMPTS["designer"].format(scoped_request=state["scoped_request"]))
    return {"design_specs": specs, "messages": state["messages"] + [{"role": "designer", "content": specs}]}

def engineer_agent(state: AgentState):
    html = run_pipeline("software_engineer", PROMPTS["software_engineer"].format(design_specs=state["design_specs"]))
    return {"html": html, "messages": state["messages"] + [{"role": "software_engineer", "content": html}]}

def qa_agent(state: AgentState, max_iter: int):
    feedback = run_pipeline("qa", PROMPTS["qa"].format(html=state["html"]))
    done = "APPROVED" in feedback or state["iteration"] >= max_iter
    return {"feedback": feedback, "done": done, "iteration": state["iteration"] + 1,
            "messages": state["messages"] + [{"role": "qa", "content": feedback}]}

def generate_ui(user_request: str, max_iter: int):
    state = {"messages": [{"role": "user", "content": user_request}],
             "user_request": user_request,
             "refined_request": "", "scoped_request": "", "design_specs": "",
             "html": "", "feedback": "", "iteration": 0, "done": False, "timings": {}}

    workflow = StateGraph(AgentState)
    workflow.add_node("product_manager", lambda s: time_agent(product_manager_agent, s, "product_manager"))
    workflow.add_node("project_manager", lambda s: time_agent(project_manager_agent, s, "project_manager"))
    workflow.add_node("designer", lambda s: time_agent(designer_agent, s, "designer"))
    workflow.add_node("software_engineer", lambda s: time_agent(engineer_agent, s, "software_engineer"))
    workflow.add_node("qa", lambda s: time_agent(lambda x: qa_agent(x, max_iter), s, "qa"))

    workflow.add_edge("product_manager", "project_manager")
    workflow.add_edge("project_manager", "designer")
    workflow.add_edge("designer", "software_engineer")
    workflow.add_edge("software_engineer", "qa")
    workflow.add_conditional_edges("qa", lambda s: END if s["done"] else "software_engineer")
    workflow.set_entry_point("product_manager")

    app = workflow.compile()
    total_start = time.time()
    final_state = app.invoke(state)
    return final_state["html"], final_state, time.time() - total_start

def main():
    st.title("πŸ€– Multi-Agent UI Generator")
    with st.sidebar:
        max_iter = st.slider("Max QA Iterations", 1, 5, 2)

    prompt = st.text_area("πŸ“ Describe the UI you want:", "A coffee shop landing page with hero, menu, and contact form.", height=150)

    if st.button("πŸš€ Generate UI"):
        with st.spinner("Agents working..."):
            html, final_state, total_time = generate_ui(prompt, max_iter)
            st.success("βœ… UI Generated Successfully!")
            st.components.v1.html(html, height=600, scrolling=True)

            b64 = base64.b64encode(html.encode()).decode()
            st.markdown(f'<a href="data:file/html;base64,{b64}" download="ui.html">πŸ“₯ Download HTML</a>', unsafe_allow_html=True)

            st.subheader("🧠 Agent Communication Log")
            history_text = ""
            for msg in final_state["messages"]:
                role = msg["role"].replace("_", " ").title()
                content = msg["content"]
                history_text += f"---\n{role}:\n{content}\n\n"
            st.text_area("Agent Dialogue", value=history_text, height=300)

            b64_hist = base64.b64encode(history_text.encode()).decode()
            st.markdown(
                f'<a href="data:file/txt;base64,{b64_hist}" download="agent_communication.txt">πŸ“₯ Download Communication Log</a>',
                unsafe_allow_html=True)

            st.subheader("πŸ“Š Performance")
            st.write(f"⏱️ Total Time: {total_time:.2f} seconds")
            st.write(f"πŸ” Iterations: {final_state['iteration']}")
            for stage in ["product_manager", "project_manager", "designer", "software_engineer", "qa"]:
                st.write(f"🧩 {stage.replace('_', ' ').title()} Time: {final_state['timings'].get(stage, 0):.2f}s")

if __name__ == "__main__":
    main()