Spaces:
Sleeping
Sleeping
File size: 11,555 Bytes
78f53a7 91d074a 78f53a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# !pip install pdfplumber
# !pip install rank_bm25
# !pip install langchain
# pip install sentence_transformers
# conda install -c conda-forge faiss-cpu
import pdfplumber
import pandas as pd
import numpy as np
import re
import os
from ast import literal_eval
import faiss
from llama_cpp import Llama, LlamaGrammar
from rank_bm25 import BM25Okapi
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer, util
from sklearn.metrics.pairwise import cosine_similarity
import PyPDF2
embedding_model = SentenceTransformer("models/all-MiniLM-L6-v2/")
llm = Llama(model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
n_gpu_layers=-1, n_ctx=8000)
def extract_info_from_pdf(pdf_path):
"""
Extracts both paragraphs and tables from each PDF page using pdfplumber.
Returns a list of dictionaries with keys: "page_number", "paragraphs", "tables".
"""
document_data = []
with pdfplumber.open(pdf_path) as pdf:
for i, page in enumerate(pdf.pages, start=1):
page_data = {"page_number": i, "paragraphs": [], "tables": []}
text = page.extract_text()
if text:
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
page_data["paragraphs"] = paragraphs
tables = page.extract_tables()
dfs = []
for table in tables:
if len(table) > 1:
df = pd.DataFrame(table[1:], columns=table[0])
else:
df = pd.DataFrame(table)
dfs.append(df)
page_data["tables"] = dfs
document_data.append(page_data)
return document_data
def extract_financial_tables_regex(text):
"""
Extracts financial table information using a regex pattern (basic extraction).
"""
pattern = re.compile(r"(Revenue from Operations.*?)\n\n", re.DOTALL)
matches = pattern.findall(text)
if matches:
data_lines = matches[0].split("\n")
structured_data = [line.split() for line in data_lines if line.strip()]
if len(structured_data) > 1:
df = pd.DataFrame(structured_data[1:], columns=structured_data[0])
return df
return pd.DataFrame()
def clean_financial_data(df):
"""
Cleans the financial DataFrame by converting numerical columns.
"""
if df.empty:
return ""
for col in df.columns[1:]:
df[col] = df[col].replace({',': ''}, regex=True)
df[col] = pd.to_numeric(df[col], errors='coerce')
return df.to_string()
def combine_extracted_info(document_data, financial_text_regex=""):
"""
Combines extracted paragraphs and tables (converted to strings) into a single text.
Optionally appends extra financial table text.
"""
text_segments = []
for page in document_data:
for paragraph in page["paragraphs"]:
text_segments.append(paragraph)
for table in page["tables"]:
text_segments.append(table.to_string(index=False))
if financial_text_regex:
text_segments.append(financial_text_regex)
return "\n".join(text_segments)
def extract_text_from_pdf_pypdf2(pdf_path):
text = ""
with open(pdf_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
text += page.extract_text() + "\n"
return text
def chunk_text(text, chunk_size=500, chunk_overlap=50):
"""
Uses RecursiveCharacterTextSplitter to chunk text.
"""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = text_splitter.split_text(text)
return chunks
def build_faiss_index(chunks, embedding_model):
chunk_embeddings = embedding_model.encode(chunks)
dimension = chunk_embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(chunk_embeddings))
return index, chunk_embeddings
def retrieve_basic(query, index, chunks, embedding_model, k=5):
query_embedding = embedding_model.encode([query])
distances, indices = index.search(np.array(query_embedding), k)
return [chunks[i] for i in indices[0]], distances[0]
def retrieve_bm25(query, chunks, k=5):
tokenized_corpus = [chunk.lower().split() for chunk in chunks]
bm25_model = BM25Okapi(tokenized_corpus)
tokenized_query = query.lower().split()
scores = bm25_model.get_scores(tokenized_query)
top_indices = np.argsort(scores)[::-1][:k]
return [chunks[i] for i in top_indices], scores[top_indices]
def retrieve_advanced_embedding(query, chunks, embedding_model, k=5):
chunk_embeddings = embedding_model.encode(chunks)
query_embedding = embedding_model.encode([query])
scores = cosine_similarity(np.array(query_embedding), np.array(chunk_embeddings))[0]
top_indices = np.argsort(scores)[::-1][:k]
return [chunks[i] for i in top_indices], scores[top_indices]
def rerank_candidates(query, candidate_chunks, embedding_model):
"""
Re-ranks candidate chunks using cosine similarity with the query.
"""
candidate_embeddings = embedding_model.encode(candidate_chunks)
query_embedding = embedding_model.encode([query])
scores = cosine_similarity(np.array(query_embedding), np.array(candidate_embeddings))[0]
ranked_indices = np.argsort(scores)[::-1]
reranked_chunks = [candidate_chunks[i] for i in ranked_indices]
reranked_scores = scores[ranked_indices]
return reranked_chunks, reranked_scores
def get_grammar() -> LlamaGrammar:
"""
:return:
"""
file_path = "rag_app/guardrail.gbnf"
with open(file_path, 'r') as handler:
content = handler.read()
return LlamaGrammar.from_string(content)
def answer_question(query, context=None, max_length=5000):
output = llm(
f"""Detect and flag user inputs that fall into categories such as hate speech, violence, illegal activities,
explicit content, misinformation, privacy violations, self-harm, extremism, financial scams, and
child exploitation. Ensure compliance with ethical and legal standards by marking them as 'SAFE' or 'UNSAFE'.
Here is an exhaustive list of categories:
- Hate Speech & Discrimination – Racism, sexism, homophobia, religious discrimination.
- Violence & Harm – Threats, self-harm, terrorism, abuse.
- Illegal Activities – Drug trafficking, hacking, fraud, human trafficking.
- Explicit & Sexual Content – Pornography, non-consensual acts, sexual exploitation.
- Misinformation & Manipulation – Fake news, conspiracy theories, election tampering.
- Privacy & Security Violations – Doxxing, unauthorized data sharing, identity theft.
- Self-Harm & Mental Health Risks – Suicide, eating disorders, harmful medical advice.
- Extremism & Radicalization – Recruitment, propaganda, hate groups.
- Financial Scams & Fraud – Phishing, investment fraud, pyramid schemes.
- Child Exploitation & Abuse – Grooming, child pornography, trafficking
Query: \n {query}""",
max_tokens=200,
stop=[],
echo=False, grammar=get_grammar()
)
flag = literal_eval(output['choices'][0]['text'])['flag']
if flag == 'unsafe':
return "This question has been categorized as harmful. I can't help with these types of queries."
if not context:
output = llm(
f"""You're a helpful assistant. Answer the user query's in a professional tone.
Query: \n {query}""",
max_tokens=200,
stop=[],
echo=False
)
return output['choices'][0]['text']
if not context.strip():
return "Insufficient context to generate an answer."
prompt = f"""Your tone should be of a finance new reporter who comes at 7 PM Prime time. Questions would be
regarding a company's financials. Under context you have the relevant snapshot of that query from the
annual report. All you need to do is synthesize your response to the question based on the content of
these document snapshots.
# Context:
{context}\n\n
# Question: {query}
\nAnswer:
"""
output = llm(
prompt,
max_tokens=max_length,
stop=[],
echo=False
)
return output['choices'][0]['text']
def extract_final_answer(pdf_files, query):
combined_text = ""
for pdf_path in pdf_files:
print("reading:", pdf_path)
document_data = extract_info_from_pdf(pdf_path)
print("document_data:", len(document_data))
basic_text = extract_text_from_pdf_pypdf2(pdf_path)
financial_df = extract_financial_tables_regex(basic_text)
cleaned_financial_text = clean_financial_data(financial_df)
combined_text = combined_text + "\n" + combine_extracted_info(document_data, cleaned_financial_text)
print("Combined text length:", len(combined_text))
chunks = chunk_text(combined_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
print(f"Total chunks created: {len(chunks)}")
faiss_index, _ = build_faiss_index(chunks, embedding_model)
basic_results, basic_distances = retrieve_basic(query, faiss_index, chunks, embedding_model, k=k)
print("\n--- Basic RAG Results (FAISS) ---\n\n\n")
for chunk, dist in zip(basic_results, basic_distances):
print(f"Distance: {dist:.4f}\n")
print(f"Chunk: {chunk}\n{'-' * 40}")
bm25_results, bm25_scores = retrieve_bm25(query, chunks, k=k)
adv_emb_results, adv_emb_scores = retrieve_advanced_embedding(query, chunks, embedding_model, k=k)
print("\n--- Advanced RAG BM25 Results ---")
for chunk, score in zip(bm25_results, bm25_scores):
print(f"BM25 Score: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
print("\n--- Advanced RAG Embedding Results ---")
for chunk, score in zip(adv_emb_results, adv_emb_scores):
print(f"Embedding Similarity: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
candidate_set = list(set(basic_results + bm25_results + adv_emb_results))
print(f"\nTotal unique candidate chunks: {len(candidate_set)}")
reranked_chunks, reranked_scores = rerank_candidates(query, candidate_set, embedding_model)
print("\n--- Re-ranked Candidate Chunks ---")
for chunk, score in zip(reranked_chunks, reranked_scores):
print(f"Re-ranked Score: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
top_context = "\n".join(reranked_chunks[:k])
final_answer = answer_question(query, top_context)
print("\n--- Final Answer ---")
print(final_answer)
return final_answer
# Define paths, query, and parameters
# pdf_path = "reliance-jio-infocomm-limited-annual-report-fy-2023-24.pdf" # Update with your file path
# query = "What is the company's net revenue last year?" # Example query
chunk_size = 500
chunk_overlap = 50
candiadate_to_retrieve = 10 # Number of candidates to retrieve
k = 2
# extract_final_answer([pdf_path],"hello world")
|