Spaces:
Sleeping
Sleeping
adding all files with Docker configuration of the app
Browse files- Dockerfile +31 -0
- rag_app/app.py +77 -0
- rag_app/chat_utils.py +143 -0
- rag_app/embeddings.py +46 -0
- rag_app/guardrail.gbnf +13 -0
- rag_app/rag.py +287 -0
- requirements.txt +15 -0
Dockerfile
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Miniconda image as the base
|
2 |
+
FROM python:3.10.15-bullseye
|
3 |
+
ENV PIP_DEFAULT_TIMEOUT=300
|
4 |
+
|
5 |
+
RUN apt-get update && \
|
6 |
+
apt-get install -y \
|
7 |
+
# General dependencies
|
8 |
+
locales \
|
9 |
+
locales-all && \
|
10 |
+
# Clean local repository of package files since they won't be needed anymore.
|
11 |
+
# Make sure this line is called after all apt-get update/install commands have
|
12 |
+
# run.
|
13 |
+
apt-get clean && \
|
14 |
+
# Also delete the index files which we also don't need anymore.
|
15 |
+
rm -rf /var/lib/apt/lists/* \
|
16 |
+
|
17 |
+
ENV LC_ALL en_US.UTF-8
|
18 |
+
ENV LANG en_US.UTF-8
|
19 |
+
ENV LANGUAGE en_US.UTF-8
|
20 |
+
|
21 |
+
COPY requirements.txt .
|
22 |
+
RUN pip install -r requirements.txt
|
23 |
+
|
24 |
+
RUN groupadd -g 900 mesop && useradd -u 900 -s /bin/bash -g mesop mesop
|
25 |
+
USER mesop
|
26 |
+
|
27 |
+
COPY . /finance-rag-chatbot-group39
|
28 |
+
WORKDIR /finance-rag-chatbot-group39
|
29 |
+
|
30 |
+
# Final command: run the mesop script
|
31 |
+
CMD ["mesop", "rag_app/app.py", "--port", "7680"]
|
rag_app/app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mesop as me
|
2 |
+
from chat_utils import State, _make_style_chat_bubble_wrapper, _ROLE_ASSISTANT, on_chat_input, _make_chat_bubble_style, \
|
3 |
+
on_click_submit_chat_msg, _STYLE_CHAT_BUBBLE_NAME, handle_pdf_upload
|
4 |
+
|
5 |
+
_COLOR_BACKGROUND = me.theme_var("background")
|
6 |
+
|
7 |
+
_STYLE_APP_CONTAINER = me.Style(
|
8 |
+
background=_COLOR_BACKGROUND,
|
9 |
+
display="flex",
|
10 |
+
flex_direction="column",
|
11 |
+
height="100%",
|
12 |
+
margin=me.Margin.symmetric(vertical=0, horizontal="auto"),
|
13 |
+
width="min(1024px, 100%)",
|
14 |
+
box_shadow="0 3px 1px -2px #0003, 0 2px 2px #00000024, 0 1px 5px #0000001f",
|
15 |
+
padding=me.Padding(top=20, left=20, right=20),
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
@me.page()
|
20 |
+
def app():
|
21 |
+
state = me.state(State)
|
22 |
+
with me.box(style=_STYLE_APP_CONTAINER):
|
23 |
+
with me.box(style=me.Style(
|
24 |
+
width="min(680%, 100%)",
|
25 |
+
margin=me.Margin.symmetric(vertical=36, horizontal="auto"),
|
26 |
+
flex_grow=1,
|
27 |
+
overflow_y="auto",
|
28 |
+
padding=me.Padding(left=20, right=20)
|
29 |
+
)):
|
30 |
+
me.text("""
|
31 |
+
FinanceGPT - Powered by open source language models capable of document QnA on Annual
|
32 |
+
Investor Reports of top companies.
|
33 |
+
""",
|
34 |
+
style=me.Style(font_size=20, margin=me.Margin(bottom=24), text_align="center")
|
35 |
+
)
|
36 |
+
me.text("ℹ️ Upload annual reports to start asking questions.",
|
37 |
+
style=me.Style(font_size=12, margin=me.Margin(bottom=24), text_align="center")
|
38 |
+
)
|
39 |
+
for index, msg in enumerate(state.output):
|
40 |
+
with me.box(style=_make_style_chat_bubble_wrapper(msg.role), key=f"msg-{index}"):
|
41 |
+
if msg.role == _ROLE_ASSISTANT:
|
42 |
+
me.text("assistant", style=_STYLE_CHAT_BUBBLE_NAME)
|
43 |
+
with me.box(style=_make_chat_bubble_style(msg.role)):
|
44 |
+
me.markdown(msg.content)
|
45 |
+
if state.in_progress:
|
46 |
+
me.progress_spinner()
|
47 |
+
with me.box(key="scroll-to", style=me.Style(height=250)):
|
48 |
+
pass
|
49 |
+
with me.box(style=me.Style(
|
50 |
+
padding=me.Padding(top=30, left=20, right=20),
|
51 |
+
display="flex",
|
52 |
+
flex_direction="row"
|
53 |
+
)):
|
54 |
+
with me.content_uploader(
|
55 |
+
accepted_file_types=["application/pdf"],
|
56 |
+
on_upload=handle_pdf_upload,
|
57 |
+
type="icon",
|
58 |
+
style=me.Style(font_weight="bold", margin=me.Margin(right=8)),
|
59 |
+
):
|
60 |
+
me.icon("attach_file")
|
61 |
+
|
62 |
+
with me.box(style=me.Style(flex_grow=1)):
|
63 |
+
me.input(
|
64 |
+
label="Enter your prompt",
|
65 |
+
key=f"input-{len(state.output)}",
|
66 |
+
on_input=on_chat_input,
|
67 |
+
on_enter=on_click_submit_chat_msg,
|
68 |
+
style=me.Style(width="100%")
|
69 |
+
)
|
70 |
+
with me.content_button(
|
71 |
+
color="primary",
|
72 |
+
type="flat",
|
73 |
+
disabled=state.in_progress,
|
74 |
+
on_click=on_click_submit_chat_msg,
|
75 |
+
style=me.Style(margin=me.Margin(top=8, left=8))
|
76 |
+
):
|
77 |
+
me.icon("send" if not state.in_progress else "pending")
|
rag_app/chat_utils.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import mesop as me
|
3 |
+
from dataclasses import dataclass, field
|
4 |
+
from typing import Callable, Generator, Literal
|
5 |
+
import time
|
6 |
+
from rag import extract_final_answer, answer_question
|
7 |
+
|
8 |
+
|
9 |
+
Role = Literal["user", "assistant"]
|
10 |
+
_ROLE_USER = "user"
|
11 |
+
_ROLE_ASSISTANT = "assistant"
|
12 |
+
|
13 |
+
_COLOR_CHAT_BUBBLE_YOU = me.theme_var("surface-container-low")
|
14 |
+
_COLOR_CHAT_BUBBLE_BOT = me.theme_var("secondary-container")
|
15 |
+
_DEFAULT_BORDER_SIDE = me.BorderSide(
|
16 |
+
width="1px", style="solid", color=me.theme_var("secondary-fixed")
|
17 |
+
)
|
18 |
+
_STYLE_CHAT_BUBBLE_NAME = me.Style(
|
19 |
+
font_weight="bold",
|
20 |
+
font_size="12px",
|
21 |
+
padding=me.Padding(left=15, right=15, bottom=5),
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass(kw_only=True)
|
26 |
+
class ChatMessage:
|
27 |
+
role: Role = "user"
|
28 |
+
content: str = ""
|
29 |
+
|
30 |
+
|
31 |
+
@me.stateclass
|
32 |
+
class State:
|
33 |
+
input: str = ""
|
34 |
+
output: list[ChatMessage] = field(default_factory=list)
|
35 |
+
in_progress: bool = False
|
36 |
+
pdf_files: list[str] = field(default_factory=list) # Changed to a list
|
37 |
+
|
38 |
+
|
39 |
+
def respond_to_chat(query: str, history: list[ChatMessage]):
|
40 |
+
assistant_message = ChatMessage(role=_ROLE_ASSISTANT)
|
41 |
+
yield assistant_message
|
42 |
+
state = me.state(State)
|
43 |
+
pdf_files = state.pdf_files
|
44 |
+
if pdf_files:
|
45 |
+
response = extract_final_answer(pdf_files, query)
|
46 |
+
else:
|
47 |
+
response = answer_question(query)
|
48 |
+
|
49 |
+
print("Agent response=", response)
|
50 |
+
yield response
|
51 |
+
|
52 |
+
# messages = [{"role": message.role, "content": message.content} for message in history]
|
53 |
+
# llm_response = llm.create_chat_completion(
|
54 |
+
# messages=messages,
|
55 |
+
# max_tokens=1024,
|
56 |
+
# stop=[],
|
57 |
+
# stream=True
|
58 |
+
# )
|
59 |
+
# assistant_message = ChatMessage(role=_ROLE_ASSISTANT)
|
60 |
+
# yield assistant_message
|
61 |
+
# for item in llm_response:
|
62 |
+
# delta = item['choices'][0]['delta']
|
63 |
+
# if 'content' in delta:
|
64 |
+
# text = delta["content"]
|
65 |
+
# yield text
|
66 |
+
|
67 |
+
def on_chat_input(e: me.InputEvent):
|
68 |
+
state = me.state(State)
|
69 |
+
state.input = e.value
|
70 |
+
|
71 |
+
|
72 |
+
def on_click_submit_chat_msg(e: me.ClickEvent | me.InputEnterEvent):
|
73 |
+
state = me.state(State)
|
74 |
+
if state.in_progress or not state.input:
|
75 |
+
return
|
76 |
+
input_ = state.input
|
77 |
+
state.input = ""
|
78 |
+
yield
|
79 |
+
|
80 |
+
output = state.output
|
81 |
+
output.append(ChatMessage(role=_ROLE_USER, content=input_))
|
82 |
+
state.in_progress = True
|
83 |
+
me.scroll_into_view(key="scroll-to")
|
84 |
+
yield
|
85 |
+
|
86 |
+
start_time = time.time()
|
87 |
+
for content in respond_to_chat(input_, state.output):
|
88 |
+
if isinstance(content, ChatMessage):
|
89 |
+
assistant_message = content
|
90 |
+
output.append(assistant_message)
|
91 |
+
state.output = output
|
92 |
+
else:
|
93 |
+
assistant_message.content += content
|
94 |
+
if (time.time() - start_time) >= 0.25:
|
95 |
+
start_time = time.time()
|
96 |
+
yield
|
97 |
+
|
98 |
+
state.in_progress = False
|
99 |
+
yield
|
100 |
+
|
101 |
+
|
102 |
+
def _make_style_chat_bubble_wrapper(role: Role) -> me.Style:
|
103 |
+
align_items = "end" if role == _ROLE_USER else "start"
|
104 |
+
return me.Style(
|
105 |
+
display="flex",
|
106 |
+
flex_direction="column",
|
107 |
+
align_items=align_items,
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
def _make_chat_bubble_style(role: Role) -> me.Style:
|
112 |
+
background = _COLOR_CHAT_BUBBLE_YOU
|
113 |
+
if role == _ROLE_ASSISTANT:
|
114 |
+
background = _COLOR_CHAT_BUBBLE_BOT
|
115 |
+
return me.Style(
|
116 |
+
width="80%",
|
117 |
+
font_size="13px",
|
118 |
+
background=background,
|
119 |
+
border_radius="15px",
|
120 |
+
padding=me.Padding(right=15, left=15, bottom=3),
|
121 |
+
margin=me.Margin(bottom=10),
|
122 |
+
border=me.Border(
|
123 |
+
left=_DEFAULT_BORDER_SIDE,
|
124 |
+
right=_DEFAULT_BORDER_SIDE,
|
125 |
+
top=_DEFAULT_BORDER_SIDE,
|
126 |
+
bottom=_DEFAULT_BORDER_SIDE,
|
127 |
+
),
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
def save_uploaded_file(uploaded_file: me.UploadedFile):
|
132 |
+
save_directory = "docs"
|
133 |
+
os.makedirs(save_directory, exist_ok=True)
|
134 |
+
file_path = os.path.join(save_directory, uploaded_file.name)
|
135 |
+
with open(file_path, "wb") as f:
|
136 |
+
f.write(uploaded_file.getvalue())
|
137 |
+
print(f"File saved successfully at {file_path}")
|
138 |
+
|
139 |
+
|
140 |
+
def handle_pdf_upload(event: me.UploadEvent):
|
141 |
+
state = me.state(State)
|
142 |
+
save_uploaded_file(event.file)
|
143 |
+
state.pdf_files.append(os.path.join("docs", event.file.name))
|
rag_app/embeddings.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_cpp import Llama
|
2 |
+
from typing import Any, List
|
3 |
+
from llama_index.core.embeddings import BaseEmbedding
|
4 |
+
from llama_index.core.bridge.pydantic import PrivateAttr
|
5 |
+
|
6 |
+
|
7 |
+
class LlamaCppIndexEmbedding(BaseEmbedding):
|
8 |
+
_model: Llama = PrivateAttr()
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
model_path: str = "models/bge-m3-Q4_K_M.gguf",
|
13 |
+
**kwargs: Any,
|
14 |
+
) -> None:
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
self._model = Llama(model_path=model_path, embedding=True)
|
17 |
+
|
18 |
+
@classmethod
|
19 |
+
def class_name(cls) -> str:
|
20 |
+
return "llama-cpp-bge-m3-embeddings"
|
21 |
+
|
22 |
+
async def _aget_query_embedding(self, query: str) -> List[float]:
|
23 |
+
return self._get_query_embedding(query)
|
24 |
+
|
25 |
+
async def _aget_text_embedding(self, text: str) -> List[float]:
|
26 |
+
return self._get_text_embedding(text)
|
27 |
+
|
28 |
+
def _get_query_embedding(self, query: str) -> List[float]:
|
29 |
+
# Generate embedding using llama-cpp-python
|
30 |
+
response = self._model.create_embedding(input=query)
|
31 |
+
embedding = response['data'][0]['embedding']
|
32 |
+
return embedding
|
33 |
+
|
34 |
+
def _get_text_embedding(self, text: str) -> List[float]:
|
35 |
+
# Generate embedding for a single text
|
36 |
+
response = self._model.create_embedding(input=text)
|
37 |
+
embedding = response['data'][0]['embedding']
|
38 |
+
return embedding
|
39 |
+
|
40 |
+
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
|
41 |
+
# Generate embeddings for a list of texts
|
42 |
+
embeddings = []
|
43 |
+
for text in texts:
|
44 |
+
embedding = self._get_text_embedding(text)
|
45 |
+
embeddings.append(embedding)
|
46 |
+
return embeddings
|
rag_app/guardrail.gbnf
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
root ::= (" "| "\n") grammar-models
|
2 |
+
grammar-models ::= category
|
3 |
+
category ::= "{" "\n" ws "\"flag\"" ":" ws category-flag "\n" ws "}"
|
4 |
+
category-flag ::= "\"safe\"" | "\"unsafe\""
|
5 |
+
boolean ::= "true" | "false"
|
6 |
+
null ::= "null"
|
7 |
+
string ::= "\"" (
|
8 |
+
[^"\\] |
|
9 |
+
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
10 |
+
)* "\"" ws
|
11 |
+
ws ::= ([ \t\n] ws)?
|
12 |
+
float ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
13 |
+
integer ::= [0-9]+
|
rag_app/rag.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# !pip install pdfplumber
|
2 |
+
# !pip install rank_bm25
|
3 |
+
# !pip install langchain
|
4 |
+
# pip install sentence_transformers
|
5 |
+
# conda install -c conda-forge faiss-cpu
|
6 |
+
|
7 |
+
import pdfplumber
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import re
|
11 |
+
import os
|
12 |
+
from ast import literal_eval
|
13 |
+
import faiss
|
14 |
+
from llama_cpp import Llama, LlamaGrammar
|
15 |
+
from rank_bm25 import BM25Okapi
|
16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
+
from sentence_transformers import SentenceTransformer, util
|
18 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
19 |
+
import PyPDF2
|
20 |
+
|
21 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
22 |
+
llm = Llama(model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
|
23 |
+
n_gpu_layers=-1, n_ctx=8000)
|
24 |
+
|
25 |
+
|
26 |
+
def extract_info_from_pdf(pdf_path):
|
27 |
+
"""
|
28 |
+
Extracts both paragraphs and tables from each PDF page using pdfplumber.
|
29 |
+
Returns a list of dictionaries with keys: "page_number", "paragraphs", "tables".
|
30 |
+
"""
|
31 |
+
document_data = []
|
32 |
+
with pdfplumber.open(pdf_path) as pdf:
|
33 |
+
for i, page in enumerate(pdf.pages, start=1):
|
34 |
+
page_data = {"page_number": i, "paragraphs": [], "tables": []}
|
35 |
+
text = page.extract_text()
|
36 |
+
if text:
|
37 |
+
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
|
38 |
+
page_data["paragraphs"] = paragraphs
|
39 |
+
tables = page.extract_tables()
|
40 |
+
dfs = []
|
41 |
+
for table in tables:
|
42 |
+
if len(table) > 1:
|
43 |
+
df = pd.DataFrame(table[1:], columns=table[0])
|
44 |
+
else:
|
45 |
+
df = pd.DataFrame(table)
|
46 |
+
dfs.append(df)
|
47 |
+
page_data["tables"] = dfs
|
48 |
+
document_data.append(page_data)
|
49 |
+
return document_data
|
50 |
+
|
51 |
+
|
52 |
+
def extract_financial_tables_regex(text):
|
53 |
+
"""
|
54 |
+
Extracts financial table information using a regex pattern (basic extraction).
|
55 |
+
"""
|
56 |
+
pattern = re.compile(r"(Revenue from Operations.*?)\n\n", re.DOTALL)
|
57 |
+
matches = pattern.findall(text)
|
58 |
+
if matches:
|
59 |
+
data_lines = matches[0].split("\n")
|
60 |
+
structured_data = [line.split() for line in data_lines if line.strip()]
|
61 |
+
if len(structured_data) > 1:
|
62 |
+
df = pd.DataFrame(structured_data[1:], columns=structured_data[0])
|
63 |
+
return df
|
64 |
+
return pd.DataFrame()
|
65 |
+
|
66 |
+
|
67 |
+
def clean_financial_data(df):
|
68 |
+
"""
|
69 |
+
Cleans the financial DataFrame by converting numerical columns.
|
70 |
+
"""
|
71 |
+
if df.empty:
|
72 |
+
return ""
|
73 |
+
for col in df.columns[1:]:
|
74 |
+
df[col] = df[col].replace({',': ''}, regex=True)
|
75 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
76 |
+
return df.to_string()
|
77 |
+
|
78 |
+
|
79 |
+
def combine_extracted_info(document_data, financial_text_regex=""):
|
80 |
+
"""
|
81 |
+
Combines extracted paragraphs and tables (converted to strings) into a single text.
|
82 |
+
Optionally appends extra financial table text.
|
83 |
+
"""
|
84 |
+
text_segments = []
|
85 |
+
for page in document_data:
|
86 |
+
for paragraph in page["paragraphs"]:
|
87 |
+
text_segments.append(paragraph)
|
88 |
+
for table in page["tables"]:
|
89 |
+
text_segments.append(table.to_string(index=False))
|
90 |
+
if financial_text_regex:
|
91 |
+
text_segments.append(financial_text_regex)
|
92 |
+
return "\n".join(text_segments)
|
93 |
+
|
94 |
+
|
95 |
+
def extract_text_from_pdf_pypdf2(pdf_path):
|
96 |
+
text = ""
|
97 |
+
with open(pdf_path, "rb") as file:
|
98 |
+
reader = PyPDF2.PdfReader(file)
|
99 |
+
for page in reader.pages:
|
100 |
+
text += page.extract_text() + "\n"
|
101 |
+
return text
|
102 |
+
|
103 |
+
|
104 |
+
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
105 |
+
"""
|
106 |
+
Uses RecursiveCharacterTextSplitter to chunk text.
|
107 |
+
"""
|
108 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
109 |
+
chunks = text_splitter.split_text(text)
|
110 |
+
return chunks
|
111 |
+
|
112 |
+
|
113 |
+
def build_faiss_index(chunks, embedding_model):
|
114 |
+
chunk_embeddings = embedding_model.encode(chunks)
|
115 |
+
dimension = chunk_embeddings.shape[1]
|
116 |
+
index = faiss.IndexFlatL2(dimension)
|
117 |
+
index.add(np.array(chunk_embeddings))
|
118 |
+
return index, chunk_embeddings
|
119 |
+
|
120 |
+
|
121 |
+
def retrieve_basic(query, index, chunks, embedding_model, k=5):
|
122 |
+
query_embedding = embedding_model.encode([query])
|
123 |
+
distances, indices = index.search(np.array(query_embedding), k)
|
124 |
+
return [chunks[i] for i in indices[0]], distances[0]
|
125 |
+
|
126 |
+
|
127 |
+
def retrieve_bm25(query, chunks, k=5):
|
128 |
+
tokenized_corpus = [chunk.lower().split() for chunk in chunks]
|
129 |
+
bm25_model = BM25Okapi(tokenized_corpus)
|
130 |
+
tokenized_query = query.lower().split()
|
131 |
+
scores = bm25_model.get_scores(tokenized_query)
|
132 |
+
top_indices = np.argsort(scores)[::-1][:k]
|
133 |
+
return [chunks[i] for i in top_indices], scores[top_indices]
|
134 |
+
|
135 |
+
|
136 |
+
def retrieve_advanced_embedding(query, chunks, embedding_model, k=5):
|
137 |
+
chunk_embeddings = embedding_model.encode(chunks)
|
138 |
+
query_embedding = embedding_model.encode([query])
|
139 |
+
scores = cosine_similarity(np.array(query_embedding), np.array(chunk_embeddings))[0]
|
140 |
+
top_indices = np.argsort(scores)[::-1][:k]
|
141 |
+
return [chunks[i] for i in top_indices], scores[top_indices]
|
142 |
+
|
143 |
+
|
144 |
+
def rerank_candidates(query, candidate_chunks, embedding_model):
|
145 |
+
"""
|
146 |
+
Re-ranks candidate chunks using cosine similarity with the query.
|
147 |
+
"""
|
148 |
+
candidate_embeddings = embedding_model.encode(candidate_chunks)
|
149 |
+
query_embedding = embedding_model.encode([query])
|
150 |
+
scores = cosine_similarity(np.array(query_embedding), np.array(candidate_embeddings))[0]
|
151 |
+
ranked_indices = np.argsort(scores)[::-1]
|
152 |
+
reranked_chunks = [candidate_chunks[i] for i in ranked_indices]
|
153 |
+
reranked_scores = scores[ranked_indices]
|
154 |
+
return reranked_chunks, reranked_scores
|
155 |
+
|
156 |
+
|
157 |
+
def get_grammar() -> LlamaGrammar:
|
158 |
+
"""
|
159 |
+
|
160 |
+
:return:
|
161 |
+
"""
|
162 |
+
file_path = "rag_app/guardrail.gbnf"
|
163 |
+
with open(file_path, 'r') as handler:
|
164 |
+
content = handler.read()
|
165 |
+
return LlamaGrammar.from_string(content)
|
166 |
+
|
167 |
+
|
168 |
+
def answer_question(query, context=None, max_length=5000):
|
169 |
+
output = llm(
|
170 |
+
f"""Detect and flag user inputs that fall into categories such as hate speech, violence, illegal activities,
|
171 |
+
explicit content, misinformation, privacy violations, self-harm, extremism, financial scams, and
|
172 |
+
child exploitation. Ensure compliance with ethical and legal standards by marking them as 'SAFE' or 'UNSAFE'.
|
173 |
+
Here is an exhaustive list of categories:
|
174 |
+
- Hate Speech & Discrimination – Racism, sexism, homophobia, religious discrimination.
|
175 |
+
- Violence & Harm – Threats, self-harm, terrorism, abuse.
|
176 |
+
- Illegal Activities – Drug trafficking, hacking, fraud, human trafficking.
|
177 |
+
- Explicit & Sexual Content – Pornography, non-consensual acts, sexual exploitation.
|
178 |
+
- Misinformation & Manipulation – Fake news, conspiracy theories, election tampering.
|
179 |
+
- Privacy & Security Violations – Doxxing, unauthorized data sharing, identity theft.
|
180 |
+
- Self-Harm & Mental Health Risks – Suicide, eating disorders, harmful medical advice.
|
181 |
+
- Extremism & Radicalization – Recruitment, propaganda, hate groups.
|
182 |
+
- Financial Scams & Fraud – Phishing, investment fraud, pyramid schemes.
|
183 |
+
- Child Exploitation & Abuse – Grooming, child pornography, trafficking
|
184 |
+
|
185 |
+
Query: \n {query}""",
|
186 |
+
max_tokens=200,
|
187 |
+
stop=[],
|
188 |
+
echo=False, grammar=get_grammar()
|
189 |
+
)
|
190 |
+
flag = literal_eval(output['choices'][0]['text'])['flag']
|
191 |
+
if flag == 'unsafe':
|
192 |
+
return "This question has been categorized as harmful. I can't help with these types of queries."
|
193 |
+
|
194 |
+
if not context:
|
195 |
+
output = llm(
|
196 |
+
f"""You're a helpful assistant. Answer the user query's in a professional tone.
|
197 |
+
Query: \n {query}""",
|
198 |
+
max_tokens=200,
|
199 |
+
stop=[],
|
200 |
+
echo=False
|
201 |
+
)
|
202 |
+
return output['choices'][0]['text']
|
203 |
+
|
204 |
+
if not context.strip():
|
205 |
+
return "Insufficient context to generate an answer."
|
206 |
+
|
207 |
+
prompt = f"""Your tone should be of a finance new reporter who comes at 7 PM Prime time. Questions would be
|
208 |
+
regarding a company's financials. Under context you have the relevant snapshot of that query from the
|
209 |
+
annual report. All you need to do is synthesize your response to the question based on the content of
|
210 |
+
these document snapshots.
|
211 |
+
|
212 |
+
# Context:
|
213 |
+
{context}\n\n
|
214 |
+
# Question: {query}
|
215 |
+
\nAnswer:
|
216 |
+
"""
|
217 |
+
output = llm(
|
218 |
+
prompt,
|
219 |
+
max_tokens=max_length,
|
220 |
+
stop=[],
|
221 |
+
echo=False
|
222 |
+
)
|
223 |
+
return output['choices'][0]['text']
|
224 |
+
|
225 |
+
|
226 |
+
def extract_final_answer(pdf_files, query):
|
227 |
+
combined_text = ""
|
228 |
+
for pdf_path in pdf_files:
|
229 |
+
print("reading:", pdf_path)
|
230 |
+
document_data = extract_info_from_pdf(pdf_path)
|
231 |
+
print("document_data:", len(document_data))
|
232 |
+
|
233 |
+
basic_text = extract_text_from_pdf_pypdf2(pdf_path)
|
234 |
+
financial_df = extract_financial_tables_regex(basic_text)
|
235 |
+
cleaned_financial_text = clean_financial_data(financial_df)
|
236 |
+
|
237 |
+
combined_text = combined_text + "\n" + combine_extracted_info(document_data, cleaned_financial_text)
|
238 |
+
print("Combined text length:", len(combined_text))
|
239 |
+
|
240 |
+
chunks = chunk_text(combined_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
241 |
+
print(f"Total chunks created: {len(chunks)}")
|
242 |
+
|
243 |
+
faiss_index, _ = build_faiss_index(chunks, embedding_model)
|
244 |
+
basic_results, basic_distances = retrieve_basic(query, faiss_index, chunks, embedding_model, k=k)
|
245 |
+
print("\n--- Basic RAG Results (FAISS) ---\n\n\n")
|
246 |
+
for chunk, dist in zip(basic_results, basic_distances):
|
247 |
+
print(f"Distance: {dist:.4f}\n")
|
248 |
+
print(f"Chunk: {chunk}\n{'-' * 40}")
|
249 |
+
|
250 |
+
bm25_results, bm25_scores = retrieve_bm25(query, chunks, k=k)
|
251 |
+
adv_emb_results, adv_emb_scores = retrieve_advanced_embedding(query, chunks, embedding_model, k=k)
|
252 |
+
|
253 |
+
print("\n--- Advanced RAG BM25 Results ---")
|
254 |
+
for chunk, score in zip(bm25_results, bm25_scores):
|
255 |
+
print(f"BM25 Score: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
|
256 |
+
|
257 |
+
print("\n--- Advanced RAG Embedding Results ---")
|
258 |
+
for chunk, score in zip(adv_emb_results, adv_emb_scores):
|
259 |
+
print(f"Embedding Similarity: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
|
260 |
+
|
261 |
+
candidate_set = list(set(basic_results + bm25_results + adv_emb_results))
|
262 |
+
print(f"\nTotal unique candidate chunks: {len(candidate_set)}")
|
263 |
+
|
264 |
+
reranked_chunks, reranked_scores = rerank_candidates(query, candidate_set, embedding_model)
|
265 |
+
|
266 |
+
print("\n--- Re-ranked Candidate Chunks ---")
|
267 |
+
for chunk, score in zip(reranked_chunks, reranked_scores):
|
268 |
+
print(f"Re-ranked Score: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
|
269 |
+
|
270 |
+
top_context = "\n".join(reranked_chunks[:k])
|
271 |
+
final_answer = answer_question(query, top_context)
|
272 |
+
|
273 |
+
print("\n--- Final Answer ---")
|
274 |
+
print(final_answer)
|
275 |
+
return final_answer
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
# Define paths, query, and parameters
|
280 |
+
# pdf_path = "reliance-jio-infocomm-limited-annual-report-fy-2023-24.pdf" # Update with your file path
|
281 |
+
# query = "What is the company's net revenue last year?" # Example query
|
282 |
+
chunk_size = 500
|
283 |
+
chunk_overlap = 50
|
284 |
+
candiadate_to_retrieve = 10 # Number of candidates to retrieve
|
285 |
+
k = 2
|
286 |
+
|
287 |
+
# extract_final_answer([pdf_path],"hello world")
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy<2
|
2 |
+
pandas
|
3 |
+
gunicorn
|
4 |
+
faiss-cpu
|
5 |
+
llama-cpp-python
|
6 |
+
langchain
|
7 |
+
rank-bm25
|
8 |
+
mesop
|
9 |
+
sentence-transformers
|
10 |
+
transformers
|
11 |
+
pdfplumber
|
12 |
+
pypdf2
|
13 |
+
torch==2.6.0
|
14 |
+
torchaudio==2.6.0
|
15 |
+
torchvision==0.21.0
|