SegMatch / color_matching.py
skallewag's picture
Upload 25 files
62cc23b verified
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.figure as figure
from matplotlib.figure import Figure
import numpy.typing as npt
import os
import sys
import tempfile
import time
class RegionColorMatcher:
def __init__(self, factor=1.0, preserve_colors=True, preserve_luminance=True, method="adain"):
"""
Initialize the RegionColorMatcher.
Args:
factor: Strength of the color matching (0.0 to 1.0)
preserve_colors: If True, convert to YUV and preserve color relationships
preserve_luminance: If True, preserve the luminance when in YUV mode
method: The color matching method to use (adain, mkl, hm, reinhard, mvgd, hm-mvgd-hm, hm-mkl-hm)
"""
self.factor = factor
self.preserve_colors = preserve_colors
self.preserve_luminance = preserve_luminance
self.method = method
def match_regions(self, img1_path, img2_path, masks1, masks2):
"""
Match colors between corresponding masked regions of two images.
Args:
img1_path: Path to first image
img2_path: Path to second image
masks1: Dictionary of masks for first image {label: binary_mask}
masks2: Dictionary of masks for second image {label: binary_mask}
Returns:
A PIL Image with the color-matched result
"""
print(f"🎨 Color matching with method: {self.method}")
print(f"πŸ“Š Processing {len(masks1)} regions from img1 and {len(masks2)} regions from img2")
# Load images
img1 = Image.open(img1_path).convert("RGB")
img2 = Image.open(img2_path).convert("RGB")
# Convert to numpy arrays and normalize to [0,1]
img1_np = np.array(img1).astype(np.float32) / 255.0
img2_np = np.array(img2).astype(np.float32) / 255.0
# Create a copy of the second image as our base for color matching
# We want to make img2 look like img1's colors
result_np = np.copy(img2_np)
# Convert images to PyTorch tensors
img1_tensor = torch.from_numpy(img1_np)
img2_tensor = torch.from_numpy(img2_np)
result_tensor = torch.from_numpy(result_np)
# Track coverage to ensure all regions are processed
total_coverage = np.zeros(img2_np.shape[:2], dtype=np.float32)
processed_regions = 0
# Process each mask region
for label, mask1 in masks1.items():
if label not in masks2:
print(f"⚠️ Skipping {label} - not found in masks2")
continue
mask2 = masks2[label]
# Resize masks to match image dimensions if needed
if mask1.shape != img1_np.shape[:2]:
mask1 = self._resize_mask(mask1, img1_np.shape[:2])
if mask2.shape != img2_np.shape[:2]:
mask2 = self._resize_mask(mask2, img2_np.shape[:2])
# Check mask coverage
mask1_pixels = np.sum(mask1 > 0)
mask2_pixels = np.sum(mask2 > 0)
print(f"πŸ” Processing {label}: {mask1_pixels} pixels (img1) β†’ {mask2_pixels} pixels (img2)")
if mask1_pixels == 0 or mask2_pixels == 0:
print(f"⚠️ Skipping {label} - no pixels in mask")
continue
# Track coverage
total_coverage += (mask2 > 0).astype(np.float32)
processed_regions += 1
# Convert masks to torch tensors
mask1_tensor = torch.from_numpy(mask1.astype(np.float32))
mask2_tensor = torch.from_numpy(mask2.astype(np.float32))
# Apply color matching for this region based on selected method
if self.method == "adain":
result_tensor = self._apply_adain_to_region(
img1_tensor,
img2_tensor,
result_tensor,
mask1_tensor,
mask2_tensor
)
else:
result_tensor = self._apply_color_matcher_to_region(
img1_tensor,
img2_tensor,
result_tensor,
mask1_tensor,
mask2_tensor,
self.method
)
print(f"βœ… Completed color matching for {label}")
# Debug coverage
total_pixels = img2_np.shape[0] * img2_np.shape[1]
covered_pixels = np.sum(total_coverage > 0)
overlap_pixels = np.sum(total_coverage > 1)
print(f"πŸ“Š Coverage summary:")
print(f" Total image pixels: {total_pixels}")
print(f" Covered pixels: {covered_pixels} ({100*covered_pixels/total_pixels:.1f}%)")
print(f" Overlapping pixels: {overlap_pixels} ({100*overlap_pixels/total_pixels:.1f}%)")
print(f" Processed regions: {processed_regions}")
# Convert back to numpy, scale to [0,255] and convert to uint8
result_np = (result_tensor.numpy() * 255.0).astype(np.uint8)
# Convert to PIL Image
result_img = Image.fromarray(result_np)
return result_img
def _resize_mask(self, mask, target_shape):
"""
Resize a mask to match the target shape.
Args:
mask: Binary mask array
target_shape: Target shape (height, width)
Returns:
Resized mask array
"""
# Convert to PIL Image for resizing
mask_img = Image.fromarray((mask * 255).astype(np.uint8))
# Resize to target shape
mask_img = mask_img.resize((target_shape[1], target_shape[0]), Image.NEAREST)
# Convert back to numpy array and normalize to [0,1]
resized_mask = np.array(mask_img).astype(np.float32) / 255.0
return resized_mask
def _apply_adain_to_region(self, source_img, target_img, result_img, source_mask, target_mask):
"""
Apply AdaIN to match the statistics of the masked region in source to the target.
Args:
source_img: Source image tensor [H,W,3] (reference for color matching)
target_img: Target image tensor [H,W,3] (to be color matched)
result_img: Result image tensor to modify [H,W,3]
source_mask: Binary mask for source image [H,W]
target_mask: Binary mask for target image [H,W]
Returns:
Modified result tensor
"""
# Ensure masks are binary
source_mask_binary = (source_mask > 0.5).float()
target_mask_binary = (target_mask > 0.5).float()
# If preserving colors, convert to YUV
if self.preserve_colors:
# RGB to YUV conversion matrix
rgb_to_yuv = torch.tensor([
[0.299, 0.587, 0.114],
[-0.14713, -0.28886, 0.436],
[0.615, -0.51499, -0.10001]
])
# Convert to YUV
source_yuv = torch.matmul(source_img, rgb_to_yuv.T)
target_yuv = torch.matmul(target_img, rgb_to_yuv.T)
result_yuv = torch.matmul(result_img, rgb_to_yuv.T)
# Only normalize Y channel if preserving luminance is False
channels_to_process = [0] if not self.preserve_luminance else []
# Always process U and V channels (chroma)
channels_to_process.extend([1, 2])
# Process selected channels
for c in channels_to_process:
# Apply the color matching only to the masked region in the result
result_channel = result_yuv[:,:,c]
matched_channel = self._match_channel_statistics(
source_yuv[:,:,c],
target_yuv[:,:,c],
result_channel,
source_mask_binary,
target_mask_binary
)
# Only update the masked region in the result
mask_expanded = target_mask_binary.unsqueeze(-1).expand_as(result_yuv)[:,:,c]
result_yuv[:,:,c] = torch.where(
mask_expanded > 0.5,
matched_channel,
result_channel
)
# Convert back to RGB
yuv_to_rgb = torch.tensor([
[1.0, 0.0, 1.13983],
[1.0, -0.39465, -0.58060],
[1.0, 2.03211, 0.0]
])
result_rgb = torch.matmul(result_yuv, yuv_to_rgb.T)
# Only update the masked region in the result
mask_expanded = target_mask_binary.unsqueeze(-1).expand_as(result_img)
result_img = torch.where(
mask_expanded > 0.5,
result_rgb,
result_img
)
else:
# Process each RGB channel separately
for c in range(3):
# Apply the color matching only to the masked region in the result
result_channel = result_img[:,:,c]
matched_channel = self._match_channel_statistics(
source_img[:,:,c],
target_img[:,:,c],
result_channel,
source_mask_binary,
target_mask_binary
)
# Only update the masked region in the result
mask_expanded = target_mask_binary.unsqueeze(-1).expand_as(result_img)[:,:,c]
result_img[:,:,c] = torch.where(
mask_expanded > 0.5,
matched_channel,
result_channel
)
# Ensure values are in valid range [0, 1]
return torch.clamp(result_img, 0.0, 1.0)
def _apply_color_matcher_to_region(self, source_img, target_img, result_img, source_mask, target_mask, method):
"""
Apply color-matcher library methods to match the statistics of the masked region in source to the target.
Args:
source_img: Source image tensor [H,W,3] (reference for color matching)
target_img: Target image tensor [H,W,3] (to be color matched)
result_img: Result image tensor to modify [H,W,3]
source_mask: Binary mask for source image [H,W]
target_mask: Binary mask for target image [H,W]
method: The color matching method to use (mkl, hm, reinhard, mvgd, hm-mvgd-hm, hm-mkl-hm)
Returns:
Modified result tensor
"""
# Ensure masks are binary
source_mask_binary = (source_mask > 0.5).float()
target_mask_binary = (target_mask > 0.5).float()
# Convert tensors to numpy arrays
source_np = source_img.detach().cpu().numpy()
target_np = target_img.detach().cpu().numpy()
source_mask_np = source_mask_binary.detach().cpu().numpy()
target_mask_np = target_mask_binary.detach().cpu().numpy()
try:
# Try to import the color_matcher library
try:
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
except ImportError:
self._install_package("color-matcher")
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
# Extract only the masked pixels from both images
source_coords = np.where(source_mask_np > 0.5)
target_coords = np.where(target_mask_np > 0.5)
if len(source_coords[0]) == 0 or len(target_coords[0]) == 0:
return result_img
# Extract pixel values from masked regions
source_pixels = source_np[source_coords]
target_pixels = target_np[target_coords]
# Initialize color matcher
cm = ColorMatcher()
if method == "mkl":
# For MKL, calculate mean and standard deviation from masked regions
source_mean = np.mean(source_pixels, axis=0)
source_std = np.std(source_pixels, axis=0)
target_mean = np.mean(target_pixels, axis=0)
target_std = np.std(target_pixels, axis=0)
# Apply the transformation
result_np = np.copy(target_np)
for c in range(3):
# Normalize the target channel and scale by source statistics
normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
# Only apply to masked region
result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
# Convert back to tensor
result_tensor = torch.from_numpy(result_np).to(result_img.device)
# Blend with original based on factor
result_img = torch.lerp(result_img, result_tensor, self.factor)
elif method == "reinhard":
# Similar to MKL but with a different normalization approach
source_mean = np.mean(source_pixels, axis=0)
source_std = np.std(source_pixels, axis=0)
target_mean = np.mean(target_pixels, axis=0)
target_std = np.std(target_pixels, axis=0)
# Apply the transformation
result_np = np.copy(target_np)
for c in range(3):
# Normalize the target channel and scale by source statistics
normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
# Only apply to masked region
result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
# Convert back to tensor
result_tensor = torch.from_numpy(result_np).to(result_img.device)
# Blend with original based on factor
result_img = torch.lerp(result_img, result_tensor, self.factor)
elif method == "mvgd":
# For MVGD, we need mean and covariance matrices
source_mean = np.mean(source_pixels, axis=0)
source_cov = np.cov(source_pixels, rowvar=False)
target_mean = np.mean(target_pixels, axis=0)
target_cov = np.cov(target_pixels, rowvar=False)
# Check if covariance matrices are valid
if np.isnan(source_cov).any() or np.isnan(target_cov).any():
# Fallback to simple statistics matching
source_std = np.std(source_pixels, axis=0)
target_std = np.std(target_pixels, axis=0)
result_np = np.copy(target_np)
for c in range(3):
normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
else:
# Apply full MVGD transformation to masked pixels
# Reshape the masked pixels for matrix operations
target_flat = target_np.reshape(-1, 3)
result_np = np.copy(target_np)
try:
# Try to compute the full MVGD transformation
source_cov_sqrt = np.linalg.cholesky(source_cov)
target_cov_sqrt = np.linalg.cholesky(target_cov)
target_cov_sqrt_inv = np.linalg.inv(target_cov_sqrt)
# Compute the transformation matrix
temp = target_cov_sqrt_inv @ source_cov @ target_cov_sqrt_inv.T
temp_sqrt_inv = np.linalg.inv(np.linalg.cholesky(temp))
A = target_cov_sqrt @ temp_sqrt_inv @ target_cov_sqrt_inv
# Apply the transformation to all pixels
for i in range(target_np.shape[0]):
for j in range(target_np.shape[1]):
if target_mask_np[i, j] > 0.5:
# Only apply to masked pixels
pixel = target_np[i, j]
centered = pixel - target_mean
transformed = centered @ A.T + source_mean
result_np[i, j] = transformed
except np.linalg.LinAlgError:
# Fallback to simple statistics matching
source_std = np.std(source_pixels, axis=0)
target_std = np.std(target_pixels, axis=0)
for c in range(3):
normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
# Convert back to tensor
result_tensor = torch.from_numpy(result_np).to(result_img.device)
# Blend with original based on factor
result_img = torch.lerp(result_img, result_tensor, self.factor)
elif method in ["hm", "hm-mvgd-hm", "hm-mkl-hm"]:
# For histogram-based methods, we'll create temporary cropped images with just the masked regions
# Get the bounding box of the masked regions
source_min_y, source_min_x = np.min(source_coords[0]), np.min(source_coords[1])
source_max_y, source_max_x = np.max(source_coords[0]), np.max(source_coords[1])
target_min_y, target_min_x = np.min(target_coords[0]), np.min(target_coords[1])
target_max_y, target_max_x = np.max(target_coords[0]), np.max(target_coords[1])
# Create cropped images with just the masked regions
source_crop = source_np[source_min_y:source_max_y+1, source_min_x:source_max_x+1].copy()
target_crop = target_np[target_min_y:target_max_y+1, target_min_x:target_max_x+1].copy()
# Create cropped masks
source_mask_crop = source_mask_np[source_min_y:source_max_y+1, source_min_x:source_max_x+1]
target_mask_crop = target_mask_np[target_min_y:target_max_y+1, target_min_x:target_max_x+1]
# Apply the mask to the cropped images
# For non-masked areas, use the average color
source_avg_color = np.mean(source_pixels, axis=0)
target_avg_color = np.mean(target_pixels, axis=0)
for c in range(3):
source_crop[:, :, c] = np.where(source_mask_crop > 0.5, source_crop[:, :, c], source_avg_color[c])
target_crop[:, :, c] = np.where(target_mask_crop > 0.5, target_crop[:, :, c], target_avg_color[c])
try:
# Use the color matcher directly on the masked regions
matched_crop = cm.transfer(src=target_crop, ref=source_crop, method=method)
# Apply the matched colors back to the original image, only in the masked region
result_np = np.copy(target_np)
# Create a mapping from crop coordinates to original image coordinates
for i in range(target_crop.shape[0]):
for j in range(target_crop.shape[1]):
orig_i = target_min_y + i
orig_j = target_min_x + j
if orig_i < target_np.shape[0] and orig_j < target_np.shape[1] and target_mask_np[orig_i, orig_j] > 0.5:
result_np[orig_i, orig_j] = matched_crop[i, j]
# Convert back to tensor
result_tensor = torch.from_numpy(result_np).to(result_img.device)
# Blend with original based on factor
result_img = torch.lerp(result_img, result_tensor, self.factor)
except Exception as e:
# Fallback to AdaIN if color matcher fails
print(f"Color matcher failed for {method}, using fallback: {str(e)}")
result_img = self._apply_adain_to_region(
source_img,
target_img,
result_img,
source_mask_binary,
target_mask_binary
)
elif method == "coral":
# For CORAL method, extract masked regions and apply CORAL color transfer
try:
# Create masked versions of the images
source_masked = source_np.copy()
target_masked = target_np.copy()
# Apply masks - set non-masked areas to average color
source_avg_color = np.mean(source_pixels, axis=0)
target_avg_color = np.mean(target_pixels, axis=0)
for c in range(3):
source_masked[:, :, c] = np.where(source_mask_np > 0.5, source_masked[:, :, c], source_avg_color[c])
target_masked[:, :, c] = np.where(target_mask_np > 0.5, target_masked[:, :, c], target_avg_color[c])
# Convert to torch tensors and rearrange to [C, H, W]
source_tensor = torch.from_numpy(source_masked).permute(2, 0, 1).float()
target_tensor = torch.from_numpy(target_masked).permute(2, 0, 1).float()
# Apply CORAL color transfer
matched_tensor = coral(target_tensor, source_tensor) # target gets matched to source
# Convert back to [H, W, C] format
matched_np = matched_tensor.permute(1, 2, 0).numpy()
# Apply the matched colors back to the original image, only in the masked region
result_np = np.copy(target_np)
for c in range(3):
result_np[:, :, c] = np.where(target_mask_np > 0.5, matched_np[:, :, c], target_np[:, :, c])
# Convert back to tensor
result_tensor = torch.from_numpy(result_np).to(result_img.device)
# Blend with original based on factor
result_img = torch.lerp(result_img, result_tensor, self.factor)
except Exception as e:
# Fallback to AdaIN if CORAL fails
print(f"CORAL failed for {method}, using fallback: {str(e)}")
result_img = self._apply_adain_to_region(
source_img,
target_img,
result_img,
source_mask_binary,
target_mask_binary
)
else:
# Default to AdaIN for unsupported methods
result_img = self._apply_adain_to_region(
source_img,
target_img,
result_img,
source_mask_binary,
target_mask_binary
)
except Exception as e:
# If all fails, fallback to AdaIN
print(f"Error in color matching: {str(e)}, using AdaIN as fallback")
result_img = self._apply_adain_to_region(
source_img,
target_img,
result_img,
source_mask_binary,
target_mask_binary
)
return torch.clamp(result_img, 0.0, 1.0)
def _match_channel_statistics(self, source_channel, target_channel, result_channel, source_mask, target_mask):
"""
Match the statistics of a single channel.
Args:
source_channel: Source channel [H,W] (reference for color matching)
target_channel: Target channel [H,W] (to be color matched)
result_channel: Result channel to modify [H,W]
source_mask: Binary mask for source [H,W]
target_mask: Binary mask for target [H,W]
Returns:
Modified result channel
"""
# Count non-zero elements in masks
source_count = torch.sum(source_mask)
target_count = torch.sum(target_mask)
if source_count > 0 and target_count > 0:
# Calculate statistics only from masked regions
source_masked = source_channel * source_mask
target_masked = target_channel * target_mask
# Calculate mean
source_mean = torch.sum(source_masked) / source_count
target_mean = torch.sum(target_masked) / target_count
# Calculate variance
source_var = torch.sum(((source_channel - source_mean) * source_mask) ** 2) / source_count
target_var = torch.sum(((target_channel - target_mean) * target_mask) ** 2) / target_count
# Calculate std (add small epsilon to avoid division by zero)
source_std = torch.sqrt(source_var + 1e-8)
target_std = torch.sqrt(target_var + 1e-8)
# Apply AdaIN to the masked region
normalized = ((target_channel - target_mean) / target_std) * source_std + source_mean
# Blend with original based on factor
result = torch.lerp(target_channel, normalized, self.factor)
return result
return result_channel
def _install_package(self, package_name):
"""Install a package using pip."""
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
def create_comparison_figure(original_img, matched_img, title="Color Matching Comparison"):
"""
Create a matplotlib figure with the original and color-matched images.
Args:
original_img: Original PIL Image
matched_img: Color-matched PIL Image
title: Title for the figure
Returns:
matplotlib Figure
"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
ax1.imshow(original_img)
ax1.set_title("Original")
ax1.axis('off')
ax2.imshow(matched_img)
ax2.set_title("Color Matched")
ax2.axis('off')
plt.suptitle(title)
plt.tight_layout()
return fig
def coral(source, target):
"""
CORAL (Color Transfer using Correlated Color Temperature) implementation.
Based on the original ColorMatchImage approach.
Args:
source: Source image tensor [C, H, W] (to be color matched)
target: Target image tensor [C, H, W] (reference for color matching)
Returns:
Color-matched source image tensor [C, H, W]
"""
# Ensure tensors are float
source = source.float()
target = target.float()
# Reshape to [C, N] where N is number of pixels
C, H, W = source.shape
source_flat = source.view(C, -1) # [C, H*W]
target_flat = target.view(C, -1) # [C, H*W]
# Compute means
source_mean = torch.mean(source_flat, dim=1, keepdim=True) # [C, 1]
target_mean = torch.mean(target_flat, dim=1, keepdim=True) # [C, 1]
# Center the data
source_centered = source_flat - source_mean # [C, H*W]
target_centered = target_flat - target_mean # [C, H*W]
# Compute covariance matrices
N = source_centered.shape[1]
source_cov = torch.mm(source_centered, source_centered.t()) / (N - 1) # [C, C]
target_cov = torch.mm(target_centered, target_centered.t()) / (N - 1) # [C, C]
# Add small epsilon to diagonal for numerical stability
eps = 1e-5
source_cov += eps * torch.eye(C, device=source.device)
target_cov += eps * torch.eye(C, device=source.device)
try:
# Compute the transformation matrix using Cholesky decomposition
# This is more stable than eigendecomposition for positive definite matrices
# Cholesky decomposition: A = L * L^T
source_chol = torch.linalg.cholesky(source_cov) # Lower triangular
target_chol = torch.linalg.cholesky(target_cov) # Lower triangular
# Compute the transformation matrix
# We want to transform source covariance to target covariance
# Transform = target_chol * source_chol^(-1)
source_chol_inv = torch.linalg.inv(source_chol)
transform_matrix = torch.mm(target_chol, source_chol_inv)
# Apply transformation: result = transform_matrix * (source - source_mean) + target_mean
result_centered = torch.mm(transform_matrix, source_centered)
result_flat = result_centered + target_mean
# Reshape back to original shape
result = result_flat.view(C, H, W)
# Clamp to valid range
result = torch.clamp(result, 0.0, 1.0)
return result
except Exception as e:
# Fallback to simple mean/std matching if Cholesky fails
print(f"CORAL Cholesky failed, using simple statistics matching: {e}")
# Simple per-channel statistics matching
source_std = torch.std(source_centered, dim=1, keepdim=True)
target_std = torch.std(target_centered, dim=1, keepdim=True)
# Avoid division by zero
source_std = torch.clamp(source_std, min=eps)
# Apply simple transformation: (source - source_mean) / source_std * target_std + target_mean
result_flat = (source_centered / source_std) * target_std + target_mean
result = result_flat.view(C, H, W)
# Clamp to valid range
result = torch.clamp(result, 0.0, 1.0)
return result