File size: 31,402 Bytes
62cc23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.figure as figure
from matplotlib.figure import Figure
import numpy.typing as npt
import os
import sys
import tempfile
import time

class RegionColorMatcher:
    def __init__(self, factor=1.0, preserve_colors=True, preserve_luminance=True, method="adain"):
        """
        Initialize the RegionColorMatcher.
        
        Args:
            factor: Strength of the color matching (0.0 to 1.0)
            preserve_colors: If True, convert to YUV and preserve color relationships
            preserve_luminance: If True, preserve the luminance when in YUV mode
            method: The color matching method to use (adain, mkl, hm, reinhard, mvgd, hm-mvgd-hm, hm-mkl-hm)
        """
        self.factor = factor
        self.preserve_colors = preserve_colors
        self.preserve_luminance = preserve_luminance
        self.method = method
        
    def match_regions(self, img1_path, img2_path, masks1, masks2):
        """
        Match colors between corresponding masked regions of two images.
        
        Args:
            img1_path: Path to first image
            img2_path: Path to second image
            masks1: Dictionary of masks for first image {label: binary_mask}
            masks2: Dictionary of masks for second image {label: binary_mask}
            
        Returns:
            A PIL Image with the color-matched result
        """
        print(f"🎨 Color matching with method: {self.method}")
        print(f"πŸ“Š Processing {len(masks1)} regions from img1 and {len(masks2)} regions from img2")
        
        # Load images
        img1 = Image.open(img1_path).convert("RGB")
        img2 = Image.open(img2_path).convert("RGB")
        
        # Convert to numpy arrays and normalize to [0,1]
        img1_np = np.array(img1).astype(np.float32) / 255.0
        img2_np = np.array(img2).astype(np.float32) / 255.0
        
        # Create a copy of the second image as our base for color matching
        # We want to make img2 look like img1's colors
        result_np = np.copy(img2_np)
        
        # Convert images to PyTorch tensors
        img1_tensor = torch.from_numpy(img1_np)
        img2_tensor = torch.from_numpy(img2_np)
        result_tensor = torch.from_numpy(result_np)
        
        # Track coverage to ensure all regions are processed
        total_coverage = np.zeros(img2_np.shape[:2], dtype=np.float32)
        processed_regions = 0
        
        # Process each mask region
        for label, mask1 in masks1.items():
            if label not in masks2:
                print(f"⚠️  Skipping {label} - not found in masks2")
                continue
                
            mask2 = masks2[label]
            
            # Resize masks to match image dimensions if needed
            if mask1.shape != img1_np.shape[:2]:
                mask1 = self._resize_mask(mask1, img1_np.shape[:2])
            
            if mask2.shape != img2_np.shape[:2]:
                mask2 = self._resize_mask(mask2, img2_np.shape[:2])
            
            # Check mask coverage
            mask1_pixels = np.sum(mask1 > 0)
            mask2_pixels = np.sum(mask2 > 0)
            print(f"πŸ” Processing {label}: {mask1_pixels} pixels (img1) β†’ {mask2_pixels} pixels (img2)")
            
            if mask1_pixels == 0 or mask2_pixels == 0:
                print(f"⚠️  Skipping {label} - no pixels in mask")
                continue
            
            # Track coverage
            total_coverage += (mask2 > 0).astype(np.float32)
            processed_regions += 1
            
            # Convert masks to torch tensors
            mask1_tensor = torch.from_numpy(mask1.astype(np.float32))
            mask2_tensor = torch.from_numpy(mask2.astype(np.float32))
            
            # Apply color matching for this region based on selected method
            if self.method == "adain":
                result_tensor = self._apply_adain_to_region(
                    img1_tensor, 
                    img2_tensor, 
                    result_tensor,
                    mask1_tensor, 
                    mask2_tensor
                )
            else:
                result_tensor = self._apply_color_matcher_to_region(
                    img1_tensor,
                    img2_tensor,
                    result_tensor,
                    mask1_tensor,
                    mask2_tensor,
                    self.method
                )
            
            print(f"βœ… Completed color matching for {label}")
        
        # Debug coverage
        total_pixels = img2_np.shape[0] * img2_np.shape[1]
        covered_pixels = np.sum(total_coverage > 0)
        overlap_pixels = np.sum(total_coverage > 1)
        
        print(f"πŸ“Š Coverage summary:")
        print(f"  Total image pixels: {total_pixels}")
        print(f"  Covered pixels: {covered_pixels} ({100*covered_pixels/total_pixels:.1f}%)")
        print(f"  Overlapping pixels: {overlap_pixels} ({100*overlap_pixels/total_pixels:.1f}%)")
        print(f"  Processed regions: {processed_regions}")
        
        # Convert back to numpy, scale to [0,255] and convert to uint8
        result_np = (result_tensor.numpy() * 255.0).astype(np.uint8)
        
        # Convert to PIL Image
        result_img = Image.fromarray(result_np)
        
        return result_img
    
    def _resize_mask(self, mask, target_shape):
        """
        Resize a mask to match the target shape.
        
        Args:
            mask: Binary mask array
            target_shape: Target shape (height, width)
            
        Returns:
            Resized mask array
        """
        # Convert to PIL Image for resizing
        mask_img = Image.fromarray((mask * 255).astype(np.uint8))
        
        # Resize to target shape
        mask_img = mask_img.resize((target_shape[1], target_shape[0]), Image.NEAREST)
        
        # Convert back to numpy array and normalize to [0,1]
        resized_mask = np.array(mask_img).astype(np.float32) / 255.0
        
        return resized_mask
    
    def _apply_adain_to_region(self, source_img, target_img, result_img, source_mask, target_mask):
        """
        Apply AdaIN to match the statistics of the masked region in source to the target.
        
        Args:
            source_img: Source image tensor [H,W,3] (reference for color matching)
            target_img: Target image tensor [H,W,3] (to be color matched)
            result_img: Result image tensor to modify [H,W,3]
            source_mask: Binary mask for source image [H,W]
            target_mask: Binary mask for target image [H,W]
            
        Returns:
            Modified result tensor
        """
        # Ensure masks are binary
        source_mask_binary = (source_mask > 0.5).float()
        target_mask_binary = (target_mask > 0.5).float()
        
        # If preserving colors, convert to YUV
        if self.preserve_colors:
            # RGB to YUV conversion matrix
            rgb_to_yuv = torch.tensor([
                [0.299, 0.587, 0.114],
                [-0.14713, -0.28886, 0.436],
                [0.615, -0.51499, -0.10001]
            ])
            
            # Convert to YUV
            source_yuv = torch.matmul(source_img, rgb_to_yuv.T)
            target_yuv = torch.matmul(target_img, rgb_to_yuv.T)
            result_yuv = torch.matmul(result_img, rgb_to_yuv.T)
            
            # Only normalize Y channel if preserving luminance is False
            channels_to_process = [0] if not self.preserve_luminance else []
            
            # Always process U and V channels (chroma)
            channels_to_process.extend([1, 2])
            
            # Process selected channels
            for c in channels_to_process:
                # Apply the color matching only to the masked region in the result
                result_channel = result_yuv[:,:,c]
                matched_channel = self._match_channel_statistics(
                    source_yuv[:,:,c], 
                    target_yuv[:,:,c], 
                    result_channel,
                    source_mask_binary, 
                    target_mask_binary
                )
                
                # Only update the masked region in the result
                mask_expanded = target_mask_binary.unsqueeze(-1).expand_as(result_yuv)[:,:,c]
                result_yuv[:,:,c] = torch.where(
                    mask_expanded > 0.5,
                    matched_channel,
                    result_channel
                )
            
            # Convert back to RGB
            yuv_to_rgb = torch.tensor([
                [1.0, 0.0, 1.13983],
                [1.0, -0.39465, -0.58060],
                [1.0, 2.03211, 0.0]
            ])
            
            result_rgb = torch.matmul(result_yuv, yuv_to_rgb.T)
            
            # Only update the masked region in the result
            mask_expanded = target_mask_binary.unsqueeze(-1).expand_as(result_img)
            result_img = torch.where(
                mask_expanded > 0.5,
                result_rgb,
                result_img
            )
            
        else:
            # Process each RGB channel separately
            for c in range(3):
                # Apply the color matching only to the masked region in the result
                result_channel = result_img[:,:,c]
                matched_channel = self._match_channel_statistics(
                    source_img[:,:,c], 
                    target_img[:,:,c], 
                    result_channel,
                    source_mask_binary, 
                    target_mask_binary
                )
                
                # Only update the masked region in the result
                mask_expanded = target_mask_binary.unsqueeze(-1).expand_as(result_img)[:,:,c]
                result_img[:,:,c] = torch.where(
                    mask_expanded > 0.5,
                    matched_channel,
                    result_channel
                )
        
        # Ensure values are in valid range [0, 1]
        return torch.clamp(result_img, 0.0, 1.0)
    
    def _apply_color_matcher_to_region(self, source_img, target_img, result_img, source_mask, target_mask, method):
        """
        Apply color-matcher library methods to match the statistics of the masked region in source to the target.
        
        Args:
            source_img: Source image tensor [H,W,3] (reference for color matching)
            target_img: Target image tensor [H,W,3] (to be color matched)
            result_img: Result image tensor to modify [H,W,3]
            source_mask: Binary mask for source image [H,W]
            target_mask: Binary mask for target image [H,W]
            method: The color matching method to use (mkl, hm, reinhard, mvgd, hm-mvgd-hm, hm-mkl-hm)
            
        Returns:
            Modified result tensor
        """
        # Ensure masks are binary
        source_mask_binary = (source_mask > 0.5).float()
        target_mask_binary = (target_mask > 0.5).float()
        
        # Convert tensors to numpy arrays
        source_np = source_img.detach().cpu().numpy()
        target_np = target_img.detach().cpu().numpy()
        source_mask_np = source_mask_binary.detach().cpu().numpy()
        target_mask_np = target_mask_binary.detach().cpu().numpy()
        
        try:
            # Try to import the color_matcher library
            try:
                from color_matcher import ColorMatcher
                from color_matcher.normalizer import Normalizer
            except ImportError:
                self._install_package("color-matcher")
                from color_matcher import ColorMatcher
                from color_matcher.normalizer import Normalizer

            # Extract only the masked pixels from both images
            source_coords = np.where(source_mask_np > 0.5)
            target_coords = np.where(target_mask_np > 0.5)
            
            if len(source_coords[0]) == 0 or len(target_coords[0]) == 0:
                return result_img
            
            # Extract pixel values from masked regions
            source_pixels = source_np[source_coords]
            target_pixels = target_np[target_coords]
            
            # Initialize color matcher
            cm = ColorMatcher()
            
            if method == "mkl":
                # For MKL, calculate mean and standard deviation from masked regions
                source_mean = np.mean(source_pixels, axis=0)
                source_std = np.std(source_pixels, axis=0)
                target_mean = np.mean(target_pixels, axis=0)
                target_std = np.std(target_pixels, axis=0)
                
                # Apply the transformation
                result_np = np.copy(target_np)
                for c in range(3):
                    # Normalize the target channel and scale by source statistics
                    normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
                    
                    # Only apply to masked region
                    result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
                
                # Convert back to tensor
                result_tensor = torch.from_numpy(result_np).to(result_img.device)
                
                # Blend with original based on factor
                result_img = torch.lerp(result_img, result_tensor, self.factor)
                
            elif method == "reinhard":
                # Similar to MKL but with a different normalization approach
                source_mean = np.mean(source_pixels, axis=0)
                source_std = np.std(source_pixels, axis=0)
                target_mean = np.mean(target_pixels, axis=0)
                target_std = np.std(target_pixels, axis=0)
                
                # Apply the transformation
                result_np = np.copy(target_np)
                for c in range(3):
                    # Normalize the target channel and scale by source statistics
                    normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
                    
                    # Only apply to masked region
                    result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
                
                # Convert back to tensor
                result_tensor = torch.from_numpy(result_np).to(result_img.device)
                
                # Blend with original based on factor
                result_img = torch.lerp(result_img, result_tensor, self.factor)
                
            elif method == "mvgd":
                # For MVGD, we need mean and covariance matrices
                source_mean = np.mean(source_pixels, axis=0)
                source_cov = np.cov(source_pixels, rowvar=False)
                target_mean = np.mean(target_pixels, axis=0)
                target_cov = np.cov(target_pixels, rowvar=False)
                
                # Check if covariance matrices are valid
                if np.isnan(source_cov).any() or np.isnan(target_cov).any():
                    # Fallback to simple statistics matching
                    source_std = np.std(source_pixels, axis=0)
                    target_std = np.std(target_pixels, axis=0)
                    
                    result_np = np.copy(target_np)
                    for c in range(3):
                        normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
                        result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
                else:
                    # Apply full MVGD transformation to masked pixels
                    # Reshape the masked pixels for matrix operations
                    target_flat = target_np.reshape(-1, 3)
                    result_np = np.copy(target_np)
                    
                    try:
                        # Try to compute the full MVGD transformation
                        source_cov_sqrt = np.linalg.cholesky(source_cov)
                        target_cov_sqrt = np.linalg.cholesky(target_cov)
                        target_cov_sqrt_inv = np.linalg.inv(target_cov_sqrt)
                        
                        # Compute the transformation matrix
                        temp = target_cov_sqrt_inv @ source_cov @ target_cov_sqrt_inv.T
                        temp_sqrt_inv = np.linalg.inv(np.linalg.cholesky(temp))
                        A = target_cov_sqrt @ temp_sqrt_inv @ target_cov_sqrt_inv
                        
                        # Apply the transformation to all pixels
                        for i in range(target_np.shape[0]):
                            for j in range(target_np.shape[1]):
                                if target_mask_np[i, j] > 0.5:
                                    # Only apply to masked pixels
                                    pixel = target_np[i, j]
                                    centered = pixel - target_mean
                                    transformed = centered @ A.T + source_mean
                                    result_np[i, j] = transformed
                    except np.linalg.LinAlgError:
                        # Fallback to simple statistics matching
                        source_std = np.std(source_pixels, axis=0)
                        target_std = np.std(target_pixels, axis=0)
                        
                        for c in range(3):
                            normalized = (target_np[:,:,c] - target_mean[c]) / (target_std[c] + 1e-8) * source_std[c] + source_mean[c]
                            result_np[:,:,c] = np.where(target_mask_np > 0.5, normalized, target_np[:,:,c])
                
                # Convert back to tensor
                result_tensor = torch.from_numpy(result_np).to(result_img.device)
                
                # Blend with original based on factor
                result_img = torch.lerp(result_img, result_tensor, self.factor)
                
            elif method in ["hm", "hm-mvgd-hm", "hm-mkl-hm"]:
                # For histogram-based methods, we'll create temporary cropped images with just the masked regions
                
                # Get the bounding box of the masked regions
                source_min_y, source_min_x = np.min(source_coords[0]), np.min(source_coords[1])
                source_max_y, source_max_x = np.max(source_coords[0]), np.max(source_coords[1])
                target_min_y, target_min_x = np.min(target_coords[0]), np.min(target_coords[1])
                target_max_y, target_max_x = np.max(target_coords[0]), np.max(target_coords[1])
                
                # Create cropped images with just the masked regions
                source_crop = source_np[source_min_y:source_max_y+1, source_min_x:source_max_x+1].copy()
                target_crop = target_np[target_min_y:target_max_y+1, target_min_x:target_max_x+1].copy()
                
                # Create cropped masks
                source_mask_crop = source_mask_np[source_min_y:source_max_y+1, source_min_x:source_max_x+1]
                target_mask_crop = target_mask_np[target_min_y:target_max_y+1, target_min_x:target_max_x+1]
                
                # Apply the mask to the cropped images
                # For non-masked areas, use the average color
                source_avg_color = np.mean(source_pixels, axis=0)
                target_avg_color = np.mean(target_pixels, axis=0)
                
                for c in range(3):
                    source_crop[:, :, c] = np.where(source_mask_crop > 0.5, source_crop[:, :, c], source_avg_color[c])
                    target_crop[:, :, c] = np.where(target_mask_crop > 0.5, target_crop[:, :, c], target_avg_color[c])
                
                try:
                    # Use the color matcher directly on the masked regions
                    matched_crop = cm.transfer(src=target_crop, ref=source_crop, method=method)
                    
                    # Apply the matched colors back to the original image, only in the masked region
                    result_np = np.copy(target_np)
                    
                    # Create a mapping from crop coordinates to original image coordinates
                    for i in range(target_crop.shape[0]):
                        for j in range(target_crop.shape[1]):
                            orig_i = target_min_y + i
                            orig_j = target_min_x + j
                            if orig_i < target_np.shape[0] and orig_j < target_np.shape[1] and target_mask_np[orig_i, orig_j] > 0.5:
                                result_np[orig_i, orig_j] = matched_crop[i, j]
                                
                    # Convert back to tensor
                    result_tensor = torch.from_numpy(result_np).to(result_img.device)
                    
                    # Blend with original based on factor
                    result_img = torch.lerp(result_img, result_tensor, self.factor)
                    
                except Exception as e:
                    # Fallback to AdaIN if color matcher fails
                    print(f"Color matcher failed for {method}, using fallback: {str(e)}")
                    result_img = self._apply_adain_to_region(
                        source_img, 
                        target_img, 
                        result_img,
                        source_mask_binary, 
                        target_mask_binary
                    )
                    
            elif method == "coral":
                # For CORAL method, extract masked regions and apply CORAL color transfer
                try:
                    # Create masked versions of the images
                    source_masked = source_np.copy()
                    target_masked = target_np.copy()
                    
                    # Apply masks - set non-masked areas to average color
                    source_avg_color = np.mean(source_pixels, axis=0)
                    target_avg_color = np.mean(target_pixels, axis=0)
                    
                    for c in range(3):
                        source_masked[:, :, c] = np.where(source_mask_np > 0.5, source_masked[:, :, c], source_avg_color[c])
                        target_masked[:, :, c] = np.where(target_mask_np > 0.5, target_masked[:, :, c], target_avg_color[c])
                    
                    # Convert to torch tensors and rearrange to [C, H, W]
                    source_tensor = torch.from_numpy(source_masked).permute(2, 0, 1).float()
                    target_tensor = torch.from_numpy(target_masked).permute(2, 0, 1).float()
                    
                    # Apply CORAL color transfer
                    matched_tensor = coral(target_tensor, source_tensor)  # target gets matched to source
                    
                    # Convert back to [H, W, C] format
                    matched_np = matched_tensor.permute(1, 2, 0).numpy()
                    
                    # Apply the matched colors back to the original image, only in the masked region
                    result_np = np.copy(target_np)
                    for c in range(3):
                        result_np[:, :, c] = np.where(target_mask_np > 0.5, matched_np[:, :, c], target_np[:, :, c])
                    
                    # Convert back to tensor
                    result_tensor = torch.from_numpy(result_np).to(result_img.device)
                    
                    # Blend with original based on factor
                    result_img = torch.lerp(result_img, result_tensor, self.factor)
                    
                except Exception as e:
                    # Fallback to AdaIN if CORAL fails
                    print(f"CORAL failed for {method}, using fallback: {str(e)}")
                    result_img = self._apply_adain_to_region(
                        source_img, 
                        target_img, 
                        result_img,
                        source_mask_binary, 
                        target_mask_binary
                    )
            else:
                # Default to AdaIN for unsupported methods
                result_img = self._apply_adain_to_region(
                    source_img, 
                    target_img, 
                    result_img,
                    source_mask_binary, 
                    target_mask_binary
                )
                
        except Exception as e:
            # If all fails, fallback to AdaIN
            print(f"Error in color matching: {str(e)}, using AdaIN as fallback")
            result_img = self._apply_adain_to_region(
                source_img, 
                target_img, 
                result_img,
                source_mask_binary, 
                target_mask_binary
            )
            
        return torch.clamp(result_img, 0.0, 1.0)
    
    def _match_channel_statistics(self, source_channel, target_channel, result_channel, source_mask, target_mask):
        """
        Match the statistics of a single channel.
        
        Args:
            source_channel: Source channel [H,W] (reference for color matching)
            target_channel: Target channel [H,W] (to be color matched)
            result_channel: Result channel to modify [H,W]
            source_mask: Binary mask for source [H,W]
            target_mask: Binary mask for target [H,W]
            
        Returns:
            Modified result channel
        """
        # Count non-zero elements in masks
        source_count = torch.sum(source_mask)
        target_count = torch.sum(target_mask)
        
        if source_count > 0 and target_count > 0:
            # Calculate statistics only from masked regions
            source_masked = source_channel * source_mask
            target_masked = target_channel * target_mask
            
            # Calculate mean
            source_mean = torch.sum(source_masked) / source_count
            target_mean = torch.sum(target_masked) / target_count
            
            # Calculate variance
            source_var = torch.sum(((source_channel - source_mean) * source_mask) ** 2) / source_count
            target_var = torch.sum(((target_channel - target_mean) * target_mask) ** 2) / target_count
            
            # Calculate std (add small epsilon to avoid division by zero)
            source_std = torch.sqrt(source_var + 1e-8)
            target_std = torch.sqrt(target_var + 1e-8)
            
            # Apply AdaIN to the masked region
            normalized = ((target_channel - target_mean) / target_std) * source_std + source_mean
            
            # Blend with original based on factor
            result = torch.lerp(target_channel, normalized, self.factor)
            
            return result
            
        return result_channel
    
    def _install_package(self, package_name):
        """Install a package using pip."""
        import subprocess
        subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])


def create_comparison_figure(original_img, matched_img, title="Color Matching Comparison"):
    """
    Create a matplotlib figure with the original and color-matched images.
    
    Args:
        original_img: Original PIL Image
        matched_img: Color-matched PIL Image
        title: Title for the figure
        
    Returns:
        matplotlib Figure
    """
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
    
    ax1.imshow(original_img)
    ax1.set_title("Original")
    ax1.axis('off')
    
    ax2.imshow(matched_img)
    ax2.set_title("Color Matched")
    ax2.axis('off')
    
    plt.suptitle(title)
    plt.tight_layout()
    
    return fig 

def coral(source, target):
    """
    CORAL (Color Transfer using Correlated Color Temperature) implementation.
    Based on the original ColorMatchImage approach.
    
    Args:
        source: Source image tensor [C, H, W] (to be color matched)
        target: Target image tensor [C, H, W] (reference for color matching)
        
    Returns:
        Color-matched source image tensor [C, H, W]
    """
    # Ensure tensors are float
    source = source.float()
    target = target.float()
    
    # Reshape to [C, N] where N is number of pixels
    C, H, W = source.shape
    source_flat = source.view(C, -1)  # [C, H*W]
    target_flat = target.view(C, -1)  # [C, H*W]
    
    # Compute means
    source_mean = torch.mean(source_flat, dim=1, keepdim=True)  # [C, 1]
    target_mean = torch.mean(target_flat, dim=1, keepdim=True)  # [C, 1]
    
    # Center the data
    source_centered = source_flat - source_mean  # [C, H*W]
    target_centered = target_flat - target_mean  # [C, H*W]
    
    # Compute covariance matrices
    N = source_centered.shape[1]
    source_cov = torch.mm(source_centered, source_centered.t()) / (N - 1)  # [C, C]
    target_cov = torch.mm(target_centered, target_centered.t()) / (N - 1)  # [C, C]
    
    # Add small epsilon to diagonal for numerical stability
    eps = 1e-5
    source_cov += eps * torch.eye(C, device=source.device)
    target_cov += eps * torch.eye(C, device=source.device)
    
    try:
        # Compute the transformation matrix using Cholesky decomposition
        # This is more stable than eigendecomposition for positive definite matrices
        
        # Cholesky decomposition: A = L * L^T
        source_chol = torch.linalg.cholesky(source_cov)  # Lower triangular
        target_chol = torch.linalg.cholesky(target_cov)  # Lower triangular
        
        # Compute the transformation matrix
        # We want to transform source covariance to target covariance
        # Transform = target_chol * source_chol^(-1)
        source_chol_inv = torch.linalg.inv(source_chol)
        transform_matrix = torch.mm(target_chol, source_chol_inv)
        
        # Apply transformation: result = transform_matrix * (source - source_mean) + target_mean
        result_centered = torch.mm(transform_matrix, source_centered)
        result_flat = result_centered + target_mean
        
        # Reshape back to original shape
        result = result_flat.view(C, H, W)
        
        # Clamp to valid range
        result = torch.clamp(result, 0.0, 1.0)
        
        return result
        
    except Exception as e:
        # Fallback to simple mean/std matching if Cholesky fails
        print(f"CORAL Cholesky failed, using simple statistics matching: {e}")
        
        # Simple per-channel statistics matching
        source_std = torch.std(source_centered, dim=1, keepdim=True)
        target_std = torch.std(target_centered, dim=1, keepdim=True)
        
        # Avoid division by zero
        source_std = torch.clamp(source_std, min=eps)
        
        # Apply simple transformation: (source - source_mean) / source_std * target_std + target_mean
        result_flat = (source_centered / source_std) * target_std + target_mean
        result = result_flat.view(C, H, W)
        
        # Clamp to valid range
        result = torch.clamp(result, 0.0, 1.0)
        
        return result