File size: 4,957 Bytes
12efa10
 
 
 
 
f07d235
12efa10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec2226
 
f07d235
6b21330
f07d235
 
 
ca48878
12efa10
6b21330
f07d235
ca48878
 
 
 
12efa10
f07d235
 
42d6492
 
 
ca48878
 
 
42d6492
 
12efa10
f07d235
12efa10
 
 
 
 
 
 
 
b2bab11
 
 
12efa10
 
 
 
 
 
 
 
 
42d6492
12efa10
42d6492
 
12efa10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d6492
12efa10
 
 
 
 
 
f07d235
12efa10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import EvalDimensions

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])

auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Size", "str", True, False)])


#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score (0-10)", "number", True)])
for eval_dim in EvalDimensions:
    if eval_dim.value.metric in ["speed", "contamination_score"]:
         auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
    else:
        auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", False)])
# Model information

#auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
#auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
#auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
#auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
#auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("License", "str", False)])
#auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
#auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Popularity (Likes)", "number", False)])
#auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
#auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])


# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    #private = ColumnContent("private", "bool", True)
    #precision = ColumnContent("precision", "str", True)
    #weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

"""    
class ModelType(Enum):


    PT = ModelDetails(name="pretrained", symbol="🟒")
    FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
    IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return ModelType.FT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "β­•" in type:
            return ModelType.IFT
        return ModelType.Unknown

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown
"""
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in EvalDimensions]