File size: 4,957 Bytes
12efa10 f07d235 12efa10 eec2226 f07d235 6b21330 f07d235 ca48878 12efa10 6b21330 f07d235 ca48878 12efa10 f07d235 42d6492 ca48878 42d6492 12efa10 f07d235 12efa10 b2bab11 12efa10 42d6492 12efa10 42d6492 12efa10 42d6492 12efa10 f07d235 12efa10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import EvalDimensions
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Size", "str", True, False)])
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score (0-10)", "number", True)])
for eval_dim in EvalDimensions:
if eval_dim.value.metric in ["speed", "contamination_score"]:
auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
else:
auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", False)])
# Model information
#auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
#auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
#auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
#auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
#auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("License", "str", False)])
#auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
#auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Popularity (Likes)", "number", False)])
#auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
#auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
#private = ColumnContent("private", "bool", True)
#precision = ColumnContent("precision", "str", True)
#weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
"""
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="π’")
FT = ModelDetails(name="fine-tuned", symbol="πΆ")
IFT = ModelDetails(name="instruction-tuned", symbol="β")
RL = ModelDetails(name="RL-tuned", symbol="π¦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πΆ" in type:
return ModelType.FT
if "pretrained" in type or "π’" in type:
return ModelType.PT
if "RL-tuned" in type or "π¦" in type:
return ModelType.RL
if "instruction-tuned" in type or "β" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
"""
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in EvalDimensions]
|