karimouda commited on
Commit
6b21330
·
1 Parent(s): c6e5f4b

Feedback #2

Browse files
Files changed (3) hide show
  1. app.py +27 -11
  2. src/display/css_html_js.py +7 -3
  3. src/display/utils.py +2 -2
app.py CHANGED
@@ -71,30 +71,39 @@ def hide_skill_columns(dataframe, exceptions=[]):
71
 
72
 
73
  def perform_cell_formatting(dataframe):
74
- return dataframe.style.format({'Contamination Score': "{:.2f}",'Benchmark Score': "{:.2f}",'Speed (words/sec)': "{:.2f}"}).apply(
 
75
  lambda rows: [
76
- "background-color: red;" if (value >0) else "background-color: green;" for value in rows
77
  ],
78
  subset=["Contamination Score"],
79
  )
80
 
 
 
 
81
  def init_leaderboard(dataframe):
82
 
83
  dataframe = hide_skill_columns(dataframe)
84
 
 
 
85
 
86
  styler = perform_cell_formatting(dataframe)
87
 
 
 
88
  return gr.Dataframe(
89
  value=styler,
90
  datatype="markdown",
91
- wrap=True,
92
  show_fullscreen_button=False,
93
  interactive=False,
94
- column_widths=[30,50,50,150,60,60,60],
95
  max_height=420,
96
  elem_classes="leaderboard_col_style",
97
- show_search="search"
 
98
  )
99
 
100
 
@@ -109,6 +118,11 @@ def init_skill_leaderboard(dataframe):
109
  def filter_dataframe(skill):
110
  filtered_df = dataframe.sort_values(by=[skill], ascending=False).reset_index(drop=True)
111
  filtered_df = hide_skill_columns(filtered_df, exceptions=[skill])
 
 
 
 
 
112
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
113
  styler = perform_cell_formatting(filtered_df)
114
  return gr.Dataframe(
@@ -132,6 +146,8 @@ def init_size_leaderboard(dataframe):
132
 
133
  dataframe = hide_skill_columns(dataframe)
134
 
 
 
135
  size_keys = ["Large","Medium","Small","Nano"]
136
 
137
  size_names = ["Large (More than 30B Parameter)","Medium (~30B)","Small (~10B)","Nano (~3B)"]
@@ -142,7 +158,7 @@ def init_size_leaderboard(dataframe):
142
  size_name_mapped_to_key = size_keys[size_names.index(size_name)]
143
  ##slice array from 0 to index of size
144
  size_list = size_keys[size_keys.index(size_name_mapped_to_key):]
145
- filtered_df = dataframe[dataframe["Category"].isin(size_list)].reset_index(drop=True)
146
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
147
  styler = perform_cell_formatting(filtered_df)
148
  return gr.Dataframe(
@@ -174,10 +190,10 @@ def get_model_info_blocks(chosen_model_name):
174
  filtered_df = LEADERBOARD_DF[LEADERBOARD_DF["Model Name"]==model_name_full].reset_index(drop=True)
175
  skills_bar_df = pd.DataFrame({
176
  'Skills': skills,
177
- 'Benchmark Score': filtered_df[skills].values[0]
178
  })
179
 
180
- skills_bar_df = skills_bar_df.sort_values(by=['Benchmark Score'], ascending=False).reset_index(drop=True)
181
 
182
  def get_metric_html(metric_title):
183
  return f"<div class='deep-dive-metric'><b>{metric_title}</b><span class='ddm-value'>{{}}</div>"
@@ -187,17 +203,17 @@ def get_model_info_blocks(chosen_model_name):
187
  with gr.Row():
188
  model_name = gr.HTML(get_metric_html("Model Name").format(chosen_model_name))
189
  with gr.Row():
190
- benchmark_score = gr.HTML(get_metric_html("Benchmark Score").format(str(filtered_df["Benchmark Score"][0])+"/10"))
191
  rank = gr.HTML(get_metric_html("Benchmark Rank").format(filtered_df["Rank"][0]))
192
  speed = gr.HTML(get_metric_html("Speed <br/>(words per second)").format(filtered_df["Speed (words/sec)"][0]))
193
  contamination = gr.HTML(get_metric_html("Contamination Score").format(filtered_df["Contamination Score"][0]))
194
- size = gr.HTML(get_metric_html("Size Category").format(filtered_df["Category"][0]))
195
 
196
  with gr.Row():
197
  skills_bar = gr.BarPlot(
198
  value=skills_bar_df,
199
  x="Skills",
200
- y="Benchmark Score",
201
  width=500,
202
  height=500,
203
  x_label_angle=45,
 
71
 
72
 
73
  def perform_cell_formatting(dataframe):
74
+
75
+ return dataframe.style.format({'Contamination Score': "{:.2f}",'Speed (words/sec)': "{:.2f}"}).apply(
76
  lambda rows: [
77
+ "background-color: red;color: white !important" if (value >0) else "color: green !important;" for value in rows
78
  ],
79
  subset=["Contamination Score"],
80
  )
81
 
82
+ def make_column_bold(df_col):
83
+ return df_col.apply(lambda x: "<b>"+str(x)+"</b>")
84
+
85
  def init_leaderboard(dataframe):
86
 
87
  dataframe = hide_skill_columns(dataframe)
88
 
89
+
90
+ dataframe["Benchmark Score (0-10)"] = make_column_bold(dataframe["Benchmark Score (0-10)"])
91
 
92
  styler = perform_cell_formatting(dataframe)
93
 
94
+
95
+
96
  return gr.Dataframe(
97
  value=styler,
98
  datatype="markdown",
99
+ wrap=False,
100
  show_fullscreen_button=False,
101
  interactive=False,
102
+ column_widths=[30,50,50,150,90,60,60],
103
  max_height=420,
104
  elem_classes="leaderboard_col_style",
105
+ show_search="search",
106
+ max_chars=None
107
  )
108
 
109
 
 
118
  def filter_dataframe(skill):
119
  filtered_df = dataframe.sort_values(by=[skill], ascending=False).reset_index(drop=True)
120
  filtered_df = hide_skill_columns(filtered_df, exceptions=[skill])
121
+ new_skill_name = skill+" Score"
122
+ filtered_df.rename(columns={skill: new_skill_name}, inplace=True)
123
+ filtered_df[new_skill_name] = make_column_bold(filtered_df[new_skill_name])
124
+ ## reorder columns of filtered_df and insert skill in the middle
125
+ filtered_df = filtered_df[list(filtered_df.columns[:4]) + [new_skill_name] + list(filtered_df.columns[4:-1])]
126
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
127
  styler = perform_cell_formatting(filtered_df)
128
  return gr.Dataframe(
 
146
 
147
  dataframe = hide_skill_columns(dataframe)
148
 
149
+ dataframe["Benchmark Score (0-10)"] = make_column_bold(dataframe["Benchmark Score (0-10)"])
150
+
151
  size_keys = ["Large","Medium","Small","Nano"]
152
 
153
  size_names = ["Large (More than 30B Parameter)","Medium (~30B)","Small (~10B)","Nano (~3B)"]
 
158
  size_name_mapped_to_key = size_keys[size_names.index(size_name)]
159
  ##slice array from 0 to index of size
160
  size_list = size_keys[size_keys.index(size_name_mapped_to_key):]
161
+ filtered_df = dataframe[dataframe["Size"].isin(size_list)].reset_index(drop=True)
162
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
163
  styler = perform_cell_formatting(filtered_df)
164
  return gr.Dataframe(
 
190
  filtered_df = LEADERBOARD_DF[LEADERBOARD_DF["Model Name"]==model_name_full].reset_index(drop=True)
191
  skills_bar_df = pd.DataFrame({
192
  'Skills': skills,
193
+ 'Benchmark Score (0-10)': filtered_df[skills].values[0]
194
  })
195
 
196
+ skills_bar_df = skills_bar_df.sort_values(by=['Benchmark Score (0-10)'], ascending=False).reset_index(drop=True)
197
 
198
  def get_metric_html(metric_title):
199
  return f"<div class='deep-dive-metric'><b>{metric_title}</b><span class='ddm-value'>{{}}</div>"
 
203
  with gr.Row():
204
  model_name = gr.HTML(get_metric_html("Model Name").format(chosen_model_name))
205
  with gr.Row():
206
+ benchmark_score = gr.HTML(get_metric_html("Benchmark Score (0-10)").format(str(filtered_df["Benchmark Score (0-10)"][0])))
207
  rank = gr.HTML(get_metric_html("Benchmark Rank").format(filtered_df["Rank"][0]))
208
  speed = gr.HTML(get_metric_html("Speed <br/>(words per second)").format(filtered_df["Speed (words/sec)"][0]))
209
  contamination = gr.HTML(get_metric_html("Contamination Score").format(filtered_df["Contamination Score"][0]))
210
+ size = gr.HTML(get_metric_html("Size Category").format(filtered_df["Size"][0]))
211
 
212
  with gr.Row():
213
  skills_bar = gr.BarPlot(
214
  value=skills_bar_df,
215
  x="Skills",
216
+ y="Benchmark Score (0-10)",
217
  width=500,
218
  height=500,
219
  x_label_angle=45,
src/display/css_html_js.py CHANGED
@@ -100,11 +100,11 @@ custom_css = """
100
 
101
  }
102
  .leaderboard_col_style th button {
103
- font-size:14px !important
104
  }
105
 
106
- .leaderboard_col_style td:nth-child(7) p{
107
- color: white !important;
108
 
109
  }
110
  .abl_header{
@@ -149,6 +149,10 @@ border-radius: 10px;
149
  display: flex;
150
  flex-direction: column !important;
151
  }
 
 
 
 
152
  """
153
 
154
  get_window_url_params = """
 
100
 
101
  }
102
  .leaderboard_col_style th button {
103
+ font-size:15px !important
104
  }
105
 
106
+ .leaderboard_col_style th button span{
107
+ white-space: break-spaces !important;
108
 
109
  }
110
  .abl_header{
 
149
  display: flex;
150
  flex-direction: column !important;
151
  }
152
+
153
+ .prose *{
154
+ color:unset;
155
+ }
156
  """
157
 
158
  get_window_url_params = """
src/display/utils.py CHANGED
@@ -26,13 +26,13 @@ auto_eval_column_dict = []
26
  auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
27
 
28
  auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
29
- auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Category", "str", True, False)])
30
 
31
 
32
  #auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
33
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
34
  #Scores
35
- auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score", "number", True)])
36
  for eval_dim in EvalDimensions:
37
  if eval_dim.value.metric in ["speed", "contamination_score"]:
38
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
 
26
  auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
27
 
28
  auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
29
+ auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Size", "str", True, False)])
30
 
31
 
32
  #auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
33
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
34
  #Scores
35
+ auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score (0-10)", "number", True)])
36
  for eval_dim in EvalDimensions:
37
  if eval_dim.value.metric in ["speed", "contamination_score"]:
38
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])