Feedback #2
Browse files- app.py +27 -11
- src/display/css_html_js.py +7 -3
- src/display/utils.py +2 -2
app.py
CHANGED
@@ -71,30 +71,39 @@ def hide_skill_columns(dataframe, exceptions=[]):
|
|
71 |
|
72 |
|
73 |
def perform_cell_formatting(dataframe):
|
74 |
-
|
|
|
75 |
lambda rows: [
|
76 |
-
"background-color: red;" if (value >0) else "
|
77 |
],
|
78 |
subset=["Contamination Score"],
|
79 |
)
|
80 |
|
|
|
|
|
|
|
81 |
def init_leaderboard(dataframe):
|
82 |
|
83 |
dataframe = hide_skill_columns(dataframe)
|
84 |
|
|
|
|
|
85 |
|
86 |
styler = perform_cell_formatting(dataframe)
|
87 |
|
|
|
|
|
88 |
return gr.Dataframe(
|
89 |
value=styler,
|
90 |
datatype="markdown",
|
91 |
-
wrap=
|
92 |
show_fullscreen_button=False,
|
93 |
interactive=False,
|
94 |
-
column_widths=[30,50,50,150,
|
95 |
max_height=420,
|
96 |
elem_classes="leaderboard_col_style",
|
97 |
-
show_search="search"
|
|
|
98 |
)
|
99 |
|
100 |
|
@@ -109,6 +118,11 @@ def init_skill_leaderboard(dataframe):
|
|
109 |
def filter_dataframe(skill):
|
110 |
filtered_df = dataframe.sort_values(by=[skill], ascending=False).reset_index(drop=True)
|
111 |
filtered_df = hide_skill_columns(filtered_df, exceptions=[skill])
|
|
|
|
|
|
|
|
|
|
|
112 |
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
113 |
styler = perform_cell_formatting(filtered_df)
|
114 |
return gr.Dataframe(
|
@@ -132,6 +146,8 @@ def init_size_leaderboard(dataframe):
|
|
132 |
|
133 |
dataframe = hide_skill_columns(dataframe)
|
134 |
|
|
|
|
|
135 |
size_keys = ["Large","Medium","Small","Nano"]
|
136 |
|
137 |
size_names = ["Large (More than 30B Parameter)","Medium (~30B)","Small (~10B)","Nano (~3B)"]
|
@@ -142,7 +158,7 @@ def init_size_leaderboard(dataframe):
|
|
142 |
size_name_mapped_to_key = size_keys[size_names.index(size_name)]
|
143 |
##slice array from 0 to index of size
|
144 |
size_list = size_keys[size_keys.index(size_name_mapped_to_key):]
|
145 |
-
filtered_df = dataframe[dataframe["
|
146 |
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
147 |
styler = perform_cell_formatting(filtered_df)
|
148 |
return gr.Dataframe(
|
@@ -174,10 +190,10 @@ def get_model_info_blocks(chosen_model_name):
|
|
174 |
filtered_df = LEADERBOARD_DF[LEADERBOARD_DF["Model Name"]==model_name_full].reset_index(drop=True)
|
175 |
skills_bar_df = pd.DataFrame({
|
176 |
'Skills': skills,
|
177 |
-
'Benchmark Score': filtered_df[skills].values[0]
|
178 |
})
|
179 |
|
180 |
-
skills_bar_df = skills_bar_df.sort_values(by=['Benchmark Score'], ascending=False).reset_index(drop=True)
|
181 |
|
182 |
def get_metric_html(metric_title):
|
183 |
return f"<div class='deep-dive-metric'><b>{metric_title}</b><span class='ddm-value'>{{}}</div>"
|
@@ -187,17 +203,17 @@ def get_model_info_blocks(chosen_model_name):
|
|
187 |
with gr.Row():
|
188 |
model_name = gr.HTML(get_metric_html("Model Name").format(chosen_model_name))
|
189 |
with gr.Row():
|
190 |
-
benchmark_score = gr.HTML(get_metric_html("Benchmark Score").format(str(filtered_df["Benchmark Score"][0])
|
191 |
rank = gr.HTML(get_metric_html("Benchmark Rank").format(filtered_df["Rank"][0]))
|
192 |
speed = gr.HTML(get_metric_html("Speed <br/>(words per second)").format(filtered_df["Speed (words/sec)"][0]))
|
193 |
contamination = gr.HTML(get_metric_html("Contamination Score").format(filtered_df["Contamination Score"][0]))
|
194 |
-
size = gr.HTML(get_metric_html("Size Category").format(filtered_df["
|
195 |
|
196 |
with gr.Row():
|
197 |
skills_bar = gr.BarPlot(
|
198 |
value=skills_bar_df,
|
199 |
x="Skills",
|
200 |
-
y="Benchmark Score",
|
201 |
width=500,
|
202 |
height=500,
|
203 |
x_label_angle=45,
|
|
|
71 |
|
72 |
|
73 |
def perform_cell_formatting(dataframe):
|
74 |
+
|
75 |
+
return dataframe.style.format({'Contamination Score': "{:.2f}",'Speed (words/sec)': "{:.2f}"}).apply(
|
76 |
lambda rows: [
|
77 |
+
"background-color: red;color: white !important" if (value >0) else "color: green !important;" for value in rows
|
78 |
],
|
79 |
subset=["Contamination Score"],
|
80 |
)
|
81 |
|
82 |
+
def make_column_bold(df_col):
|
83 |
+
return df_col.apply(lambda x: "<b>"+str(x)+"</b>")
|
84 |
+
|
85 |
def init_leaderboard(dataframe):
|
86 |
|
87 |
dataframe = hide_skill_columns(dataframe)
|
88 |
|
89 |
+
|
90 |
+
dataframe["Benchmark Score (0-10)"] = make_column_bold(dataframe["Benchmark Score (0-10)"])
|
91 |
|
92 |
styler = perform_cell_formatting(dataframe)
|
93 |
|
94 |
+
|
95 |
+
|
96 |
return gr.Dataframe(
|
97 |
value=styler,
|
98 |
datatype="markdown",
|
99 |
+
wrap=False,
|
100 |
show_fullscreen_button=False,
|
101 |
interactive=False,
|
102 |
+
column_widths=[30,50,50,150,90,60,60],
|
103 |
max_height=420,
|
104 |
elem_classes="leaderboard_col_style",
|
105 |
+
show_search="search",
|
106 |
+
max_chars=None
|
107 |
)
|
108 |
|
109 |
|
|
|
118 |
def filter_dataframe(skill):
|
119 |
filtered_df = dataframe.sort_values(by=[skill], ascending=False).reset_index(drop=True)
|
120 |
filtered_df = hide_skill_columns(filtered_df, exceptions=[skill])
|
121 |
+
new_skill_name = skill+" Score"
|
122 |
+
filtered_df.rename(columns={skill: new_skill_name}, inplace=True)
|
123 |
+
filtered_df[new_skill_name] = make_column_bold(filtered_df[new_skill_name])
|
124 |
+
## reorder columns of filtered_df and insert skill in the middle
|
125 |
+
filtered_df = filtered_df[list(filtered_df.columns[:4]) + [new_skill_name] + list(filtered_df.columns[4:-1])]
|
126 |
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
127 |
styler = perform_cell_formatting(filtered_df)
|
128 |
return gr.Dataframe(
|
|
|
146 |
|
147 |
dataframe = hide_skill_columns(dataframe)
|
148 |
|
149 |
+
dataframe["Benchmark Score (0-10)"] = make_column_bold(dataframe["Benchmark Score (0-10)"])
|
150 |
+
|
151 |
size_keys = ["Large","Medium","Small","Nano"]
|
152 |
|
153 |
size_names = ["Large (More than 30B Parameter)","Medium (~30B)","Small (~10B)","Nano (~3B)"]
|
|
|
158 |
size_name_mapped_to_key = size_keys[size_names.index(size_name)]
|
159 |
##slice array from 0 to index of size
|
160 |
size_list = size_keys[size_keys.index(size_name_mapped_to_key):]
|
161 |
+
filtered_df = dataframe[dataframe["Size"].isin(size_list)].reset_index(drop=True)
|
162 |
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
163 |
styler = perform_cell_formatting(filtered_df)
|
164 |
return gr.Dataframe(
|
|
|
190 |
filtered_df = LEADERBOARD_DF[LEADERBOARD_DF["Model Name"]==model_name_full].reset_index(drop=True)
|
191 |
skills_bar_df = pd.DataFrame({
|
192 |
'Skills': skills,
|
193 |
+
'Benchmark Score (0-10)': filtered_df[skills].values[0]
|
194 |
})
|
195 |
|
196 |
+
skills_bar_df = skills_bar_df.sort_values(by=['Benchmark Score (0-10)'], ascending=False).reset_index(drop=True)
|
197 |
|
198 |
def get_metric_html(metric_title):
|
199 |
return f"<div class='deep-dive-metric'><b>{metric_title}</b><span class='ddm-value'>{{}}</div>"
|
|
|
203 |
with gr.Row():
|
204 |
model_name = gr.HTML(get_metric_html("Model Name").format(chosen_model_name))
|
205 |
with gr.Row():
|
206 |
+
benchmark_score = gr.HTML(get_metric_html("Benchmark Score (0-10)").format(str(filtered_df["Benchmark Score (0-10)"][0])))
|
207 |
rank = gr.HTML(get_metric_html("Benchmark Rank").format(filtered_df["Rank"][0]))
|
208 |
speed = gr.HTML(get_metric_html("Speed <br/>(words per second)").format(filtered_df["Speed (words/sec)"][0]))
|
209 |
contamination = gr.HTML(get_metric_html("Contamination Score").format(filtered_df["Contamination Score"][0]))
|
210 |
+
size = gr.HTML(get_metric_html("Size Category").format(filtered_df["Size"][0]))
|
211 |
|
212 |
with gr.Row():
|
213 |
skills_bar = gr.BarPlot(
|
214 |
value=skills_bar_df,
|
215 |
x="Skills",
|
216 |
+
y="Benchmark Score (0-10)",
|
217 |
width=500,
|
218 |
height=500,
|
219 |
x_label_angle=45,
|
src/display/css_html_js.py
CHANGED
@@ -100,11 +100,11 @@ custom_css = """
|
|
100 |
|
101 |
}
|
102 |
.leaderboard_col_style th button {
|
103 |
-
font-size:
|
104 |
}
|
105 |
|
106 |
-
.leaderboard_col_style
|
107 |
-
|
108 |
|
109 |
}
|
110 |
.abl_header{
|
@@ -149,6 +149,10 @@ border-radius: 10px;
|
|
149 |
display: flex;
|
150 |
flex-direction: column !important;
|
151 |
}
|
|
|
|
|
|
|
|
|
152 |
"""
|
153 |
|
154 |
get_window_url_params = """
|
|
|
100 |
|
101 |
}
|
102 |
.leaderboard_col_style th button {
|
103 |
+
font-size:15px !important
|
104 |
}
|
105 |
|
106 |
+
.leaderboard_col_style th button span{
|
107 |
+
white-space: break-spaces !important;
|
108 |
|
109 |
}
|
110 |
.abl_header{
|
|
|
149 |
display: flex;
|
150 |
flex-direction: column !important;
|
151 |
}
|
152 |
+
|
153 |
+
.prose *{
|
154 |
+
color:unset;
|
155 |
+
}
|
156 |
"""
|
157 |
|
158 |
get_window_url_params = """
|
src/display/utils.py
CHANGED
@@ -26,13 +26,13 @@ auto_eval_column_dict = []
|
|
26 |
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
|
27 |
|
28 |
auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
|
29 |
-
auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("
|
30 |
|
31 |
|
32 |
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
33 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
|
34 |
#Scores
|
35 |
-
auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score", "number", True)])
|
36 |
for eval_dim in EvalDimensions:
|
37 |
if eval_dim.value.metric in ["speed", "contamination_score"]:
|
38 |
auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
|
|
|
26 |
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
|
27 |
|
28 |
auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
|
29 |
+
auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Size", "str", True, False)])
|
30 |
|
31 |
|
32 |
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
33 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
|
34 |
#Scores
|
35 |
+
auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score (0-10)", "number", True)])
|
36 |
for eval_dim in EvalDimensions:
|
37 |
if eval_dim.value.metric in ["speed", "contamination_score"]:
|
38 |
auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
|