sentivity's picture
Update app.py
4c8e430 verified
import gradio as gr
import requests
import torch
import torch.nn as nn
import re
import datetime
import yfinance as yf
from transformers import AutoTokenizer
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoConfig
from scipy.special import softmax
from newspaper import Article
# Load tokenizer and sentiment model
MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)
class ScorePredictor(nn.Module):
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
super(ScorePredictor, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, input_ids, attention_mask):
embedded = self.embedding(input_ids)
lstm_out, _ = self.lstm(embedded)
final_hidden_state = lstm_out[:, -1, :]
output = self.fc(final_hidden_state)
return self.sigmoid(output)
# Load trained score predictor model
score_model = ScorePredictor(tokenizer.vocab_size)
score_model.load_state_dict(torch.load("score_predictor.pth"))
score_model.eval()
# preprocesses text
def preprocess_text(text):
text = text.lower()
text = re.sub(r'http\S+', '', text)
text = re.sub(r'\d{1,2}:\d{2}', '', text)
text = re.sub(r'speaker\s+[a-z]', '', text)
text = re.sub(r'\b[a-z]{2,20}\s+howley\b', '', text)
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
# predicts sentiment
def predict_sentiment(text):
if not text:
return 0.0
# encoded_input = tokenizer(
# text.split(),
# return_tensors='pt',
# padding=True,
# truncation=True,
# max_length=512
# )
# input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
# with torch.no_grad():
# score = score_model(input_ids, attention_mask)[0].item()
# k = 20
# midpoint = 0.7
# scaled_score = 1 / (1 + np.exp(-k * (score - midpoint)))
# final_output = scaled_score * 100
# return 1-final_output
text = preprocess_text(text)
# encoded_input = tokenizer(text, return_tensors='pt')
encoded_input = tokenizer(
text,
return_tensors='pt',
truncation=True,
padding=True,
max_length=512
)
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
negative_id = -1
for idx, label in config.id2label.items():
if label.lower() == 'negative':
negative_id = idx
negative_score = scores[negative_id]
return (1-(float(negative_score)))*100
# extracts article text
def extract_article_text(url: str):
try:
article = Article(url)
article.download()
article.parse()
return {
"title": article.title or "",
"text": article.text or "",
"publish_date": article.publish_date,
"url": url
}
except Exception as e:
print(f"[ERROR] newspaper3k failed for URL {url}: {e}")
return None
# fetch article based on ticker
def fetch_article_for_ticker(ticker: str):
ticker_obj = yf.Ticker(ticker)
news_items = ticker_obj.news or []
if not news_items:
return None
for item in news_items:
if item is None:
continue
# tries both fields where yfinance might store a URL
url = item.get("link") or item.get("content", {}).get("clickThroughUrl", {}).get("url")
if not url:
continue
parsed = extract_article_text(url)
if parsed:
return parsed
return None
# initialize cache
sentiment_cache = {}
# checks if cache is valid
def is_cache_valid(cached_time, max_age_minutes=10):
if cached_time is None:
return False
now = datetime.datetime.utcnow()
age = now - cached_time
return age.total_seconds() < max_age_minutes * 60
# analyzes the tikcers
def analyze_ticker(user_ticker: str):
user_ticker = user_ticker.upper().strip()
tickers_to_check = [user_ticker, "SPY"] if user_ticker != "SPY" else ["SPY"]
results = []
for tk in tickers_to_check:
cached = sentiment_cache.get(tk)
if cached and is_cache_valid(cached.get("timestamp")):
# reuse cached entry
results.append({
"ticker": tk,
"article_blurb": cached["article_blurb"],
"sentiment": cached["sentiment"],
"timestamp": cached["timestamp"],
})
continue
# fetch fresh article via yfinance + newspaper3k
article_data = fetch_article_for_ticker(tk)
if not article_data:
blurb = f"No news articles found for {tk}."
sentiment_score = None
else:
full_text = article_data["title"] + " " + article_data["text"]
sentiment_score = predict_sentiment(full_text)
cleaned_text = preprocess_text(article_data["text"])
short_blurb = cleaned_text[:300] + "..." if len(cleaned_text) > 300 else cleaned_text
blurb = f"{article_data['title']}\n\n{short_blurb}"
timestamp = datetime.datetime.utcnow()
cache_entry = {
"article_blurb": blurb,
"sentiment": sentiment_score,
"timestamp": timestamp
}
sentiment_cache[tk] = cache_entry
results.append({
"ticker": tk,
"article_blurb": blurb,
"sentiment": sentiment_score,
"timestamp": timestamp
})
# has user_ticker appears first in the list
results.sort(key=lambda x: 0 if x["ticker"] == user_ticker else 1)
return results
def display_sentiment(results):
html = "<h2>Sentiment Analysis</h2><ul>"
for r in results:
ts_str = r["timestamp"].strftime("%Y-%m-%d %H:%M:%S UTC")
score_display = (
f"{r['sentiment']:.2f}"
if r['sentiment'] is not None else
"—"
)
html += (
f"<li><b>{r['ticker']}</b> &nbsp;({ts_str})<br>"
f"{r['article_blurb']}<br>"
f"<i>Sentiment score:</i> {score_display}</li>"
)
html += "</ul>"
return html
with gr.Blocks() as demo:
gr.Markdown("# Ticker vs. SPY Sentiment Tracker")
input_box = gr.Textbox(label="Enter any ticker symbol (e.g., AAPL)")
output_html = gr.HTML()
run_btn = gr.Button("Analyze")
def _placeholder(t):
return f"<h3>Gathering latest articles for {t.upper()} and SPY … please wait.</h3>"
run_btn.click(_placeholder, inputs=input_box, outputs=output_html, queue=False).then(
lambda t: display_sentiment(analyze_ticker(t)),
inputs=input_box,
outputs=output_html,
)
demo.launch()