sarahai's picture
Upload 2 files
e4dadea verified
raw
history blame
1.35 kB
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
# Load the saved model
model = tf.saved_model.load('saved_model/embryo_classifier')
# Define image size (should match the input size of your model)
IMG_SIZE = (300, 300)
# Function to preprocess the image
def preprocess_image(image):
image = image.resize(IMG_SIZE, Image.ANTIALIAS)
inp_numpy = np.array(image)[None]
inp = tf.constant(inp_numpy, dtype='float32')
return inp
# Streamlit interface
st.title("Embryo Quality Assessment")
st.write("Upload an embryo image to classify its quality.")
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert('RGB')
st.image(image, caption='Uploaded Image.', use_column_width=True)
st.write("Classifying...")
# Preprocess the image
processed_image = preprocess_image(image)
# Make predictions
class_scores = model(processed_image)[0].numpy()
predicted_class = class_scores.argmax()
# Display the results
classes = ['Low Quality', 'Medium Quality', 'High Quality'] # Adjust according to your classes
st.write(f"Prediction: {classes[predicted_class]}")
st.write(f"Confidence: {np.max(class_scores) * 100:.2f}%")