Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
# Load the saved model | |
model = tf.saved_model.load('saved_model/embryo_classifier') | |
# Define image size (should match the input size of your model) | |
IMG_SIZE = (300, 300) | |
# Function to preprocess the image | |
def preprocess_image(image): | |
image = image.resize(IMG_SIZE, Image.ANTIALIAS) | |
inp_numpy = np.array(image)[None] | |
inp = tf.constant(inp_numpy, dtype='float32') | |
return inp | |
# Streamlit interface | |
st.title("Embryo Quality Assessment") | |
st.write("Upload an embryo image to classify its quality.") | |
# File uploader | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file).convert('RGB') | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("Classifying...") | |
# Preprocess the image | |
processed_image = preprocess_image(image) | |
# Make predictions | |
class_scores = model(processed_image)[0].numpy() | |
predicted_class = class_scores.argmax() | |
# Display the results | |
classes = ['Low Quality', 'Medium Quality', 'High Quality'] # Adjust according to your classes | |
st.write(f"Prediction: {classes[predicted_class]}") | |
st.write(f"Confidence: {np.max(class_scores) * 100:.2f}%") | |