Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +43 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the saved model
|
7 |
+
model = tf.saved_model.load('saved_model/embryo_classifier')
|
8 |
+
|
9 |
+
# Define image size (should match the input size of your model)
|
10 |
+
IMG_SIZE = (300, 300)
|
11 |
+
|
12 |
+
# Function to preprocess the image
|
13 |
+
def preprocess_image(image):
|
14 |
+
image = image.resize(IMG_SIZE, Image.ANTIALIAS)
|
15 |
+
inp_numpy = np.array(image)[None]
|
16 |
+
inp = tf.constant(inp_numpy, dtype='float32')
|
17 |
+
return inp
|
18 |
+
|
19 |
+
# Streamlit interface
|
20 |
+
st.title("Embryo Quality Assessment")
|
21 |
+
|
22 |
+
st.write("Upload an embryo image to classify its quality.")
|
23 |
+
|
24 |
+
# File uploader
|
25 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
26 |
+
|
27 |
+
if uploaded_file is not None:
|
28 |
+
image = Image.open(uploaded_file).convert('RGB')
|
29 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
30 |
+
|
31 |
+
st.write("Classifying...")
|
32 |
+
|
33 |
+
# Preprocess the image
|
34 |
+
processed_image = preprocess_image(image)
|
35 |
+
|
36 |
+
# Make predictions
|
37 |
+
class_scores = model(processed_image)[0].numpy()
|
38 |
+
predicted_class = class_scores.argmax()
|
39 |
+
|
40 |
+
# Display the results
|
41 |
+
classes = ['Low Quality', 'Medium Quality', 'High Quality'] # Adjust according to your classes
|
42 |
+
st.write(f"Prediction: {classes[predicted_class]}")
|
43 |
+
st.write(f"Confidence: {np.max(class_scores) * 100:.2f}%")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
tensorflow
|
3 |
+
Pillow
|
4 |
+
numpy
|