|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
get_ipython().run_line_magic('matplotlib', 'inline') |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from classy import Class |
|
from scipy.optimize import fsolve |
|
from math import pi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
var_name = 'DM_annihilation_efficiency' |
|
var_array = np.linspace(0,1.11e-22,5) |
|
var_num = len(var_array) |
|
var_legend = r'$p_\mathrm{ann}$' |
|
var_figname = 'pann' |
|
|
|
|
|
|
|
|
|
|
|
common_settings = { |
|
'h':0.67556, |
|
'omega_b':0.022032, |
|
'omega_cdm':0.12038, |
|
'A_s':2.215e-9, |
|
'n_s':0.9619, |
|
'tau_reio':0.0925, |
|
|
|
'output':'tCl,pCl,lCl,mPk', |
|
'lensing':'yes', |
|
'P_k_max_1/Mpc':3.0, |
|
'l_switch_limber':9 |
|
} |
|
|
|
|
|
|
|
kvec = np.logspace(-4,np.log10(3),1000) |
|
legarray = [] |
|
twopi = 2.*pi |
|
|
|
|
|
|
|
fig_Pk, ax_Pk = plt.subplots() |
|
fig_TT, ax_TT = plt.subplots() |
|
fig_EE, ax_EE = plt.subplots() |
|
fig_PP, ax_PP = plt.subplots() |
|
|
|
M = Class() |
|
|
|
|
|
|
|
for i,var in enumerate(var_array): |
|
|
|
print (' * Compute with %s=%e'%(var_name,var)) |
|
|
|
|
|
|
|
if i == 0: |
|
var_color = 'k' |
|
var_alpha = 1. |
|
legarray.append(r'ref. $\Lambda CDM$') |
|
else: |
|
var_color = 'r' |
|
var_alpha = 1.*i/(var_num-1.) |
|
if i == var_num-1: |
|
legarray.append(var_legend) |
|
|
|
|
|
|
|
M.set(common_settings) |
|
M.set({var_name:var}) |
|
M.compute() |
|
|
|
|
|
|
|
clM = M.lensed_cl(2500) |
|
ll = clM['ell'][2:] |
|
clTT = clM['tt'][2:] |
|
clEE = clM['ee'][2:] |
|
clPP = clM['pp'][2:] |
|
|
|
|
|
|
|
pkM = [] |
|
for k in kvec: |
|
pkM.append(M.pk(k,0.)) |
|
|
|
|
|
|
|
ax_Pk.loglog(kvec,np.array(pkM),color=var_color,alpha=var_alpha,linestyle='-') |
|
|
|
|
|
|
|
ax_TT.semilogx(ll,clTT*ll*(ll+1)/twopi,color=var_color,alpha=var_alpha,linestyle='-') |
|
|
|
|
|
|
|
ax_EE.loglog(ll,clEE*ll*(ll+1)/twopi,color=var_color,alpha=var_alpha,linestyle='-') |
|
|
|
|
|
|
|
ax_PP.loglog(ll,clPP*ll*(ll+1)*ll*(ll+1)/twopi,color=var_color,alpha=var_alpha,linestyle='-') |
|
|
|
|
|
|
|
M.empty() |
|
|
|
|
|
|
|
ax_Pk.set_xlim([1.e-4,3.]) |
|
ax_Pk.set_xlabel(r'$k \,\,\,\, [h/\mathrm{Mpc}]$') |
|
ax_Pk.set_ylabel(r'$P(k) \,\,\,\, [\mathrm{Mpc}/h]^3$') |
|
ax_Pk.legend(legarray) |
|
fig_Pk.tight_layout() |
|
fig_Pk.savefig('varying_%s_Pk.pdf' % var_figname) |
|
|
|
|
|
|
|
ax_TT.set_xlim([2,2500]) |
|
ax_TT.set_xlabel(r'$\ell$') |
|
ax_TT.set_ylabel(r'$[\ell(\ell+1)/2\pi] C_\ell^\mathrm{TT}$') |
|
ax_TT.legend(legarray) |
|
fig_TT.tight_layout() |
|
fig_TT.savefig('varying_%s_cltt.pdf' % var_figname) |
|
|
|
|
|
|
|
ax_EE.set_xlim([2,2500]) |
|
ax_EE.set_xlabel(r'$\ell$') |
|
ax_EE.set_ylabel(r'$[\ell(\ell+1)/2\pi] C_\ell^\mathrm{EE}$') |
|
ax_EE.legend(legarray) |
|
fig_EE.tight_layout() |
|
fig_EE.savefig('varying_%s_clee.pdf' % var_figname) |
|
|
|
|
|
|
|
ax_PP.set_xlim([10,2500]) |
|
ax_PP.set_xlabel(r'$\ell$') |
|
ax_PP.set_ylabel(r'$[\ell^2(\ell+1)^2/2\pi] C_\ell^\mathrm{\phi \phi}$') |
|
ax_PP.legend(legarray) |
|
fig_PP.tight_layout() |
|
fig_PP.savefig('varying_%s_clpp.pdf' % var_figname) |
|
|
|
|