File size: 3,956 Bytes
bc65052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


# import necessary modules
# uncomment to get plots displayed in notebook
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from classy import Class
from scipy.optimize import fsolve
from math import pi


# In[ ]:


############################################
#
# Varying parameter (others fixed to default)
#
# With the input suntax of class <= 2.9 we used: annihilation = 1.e-5 m^3/s/Kg
# With the new syntax this is equivalent to DM_annihilation_efficiency = 1.11e-22 m^3/s/J
# (the ratio is a factor (c/[1 m/s])**2 = 9.e16)
#
var_name = 'DM_annihilation_efficiency'
var_array = np.linspace(0,1.11e-22,5)
var_num = len(var_array)
var_legend = r'$p_\mathrm{ann}$'
var_figname = 'pann'
#
#############################################
#
# Fixed settings
#
common_settings = {# LambdaCDM parameters
                   'h':0.67556,
                   'omega_b':0.022032,
                   'omega_cdm':0.12038,
                   'A_s':2.215e-9,
                   'n_s':0.9619,
                   'tau_reio':0.0925,
                   # output and precision parameters
                   'output':'tCl,pCl,lCl,mPk',
                   'lensing':'yes',
                   'P_k_max_1/Mpc':3.0,
                   'l_switch_limber':9
                   }
#
# arrays for output
#
kvec = np.logspace(-4,np.log10(3),1000)
legarray = []
twopi = 2.*pi
#
# Create figures
#
fig_Pk, ax_Pk = plt.subplots()
fig_TT, ax_TT = plt.subplots()
fig_EE, ax_EE = plt.subplots()
fig_PP, ax_PP = plt.subplots()
#
M = Class()
#
# loop over varying parameter values
#
for i,var in enumerate(var_array):
    #
    print (' * Compute with %s=%e'%(var_name,var))
    #
    # deal with colors and legends
    #
    if i == 0:
        var_color = 'k'
        var_alpha = 1.
        legarray.append(r'ref. $\Lambda CDM$')
    else:
        var_color = 'r'
        var_alpha = 1.*i/(var_num-1.)
    if i == var_num-1:
        legarray.append(var_legend)  
    #    
    # call CLASS
    #
    M.set(common_settings)
    M.set({var_name:var})
    M.compute()
    #
    # get Cls
    #
    clM = M.lensed_cl(2500)
    ll = clM['ell'][2:]
    clTT = clM['tt'][2:]
    clEE = clM['ee'][2:]
    clPP = clM['pp'][2:]
    #
    # get P(k) for common k values
    #
    pkM = []
    for k in kvec:
        pkM.append(M.pk(k,0.))
    #    
    # plot P(k)
    #
    ax_Pk.loglog(kvec,np.array(pkM),color=var_color,alpha=var_alpha,linestyle='-')
    #
    # plot C_l^TT
    #
    ax_TT.semilogx(ll,clTT*ll*(ll+1)/twopi,color=var_color,alpha=var_alpha,linestyle='-')
    #
    # plot Cl EE 
    #
    ax_EE.loglog(ll,clEE*ll*(ll+1)/twopi,color=var_color,alpha=var_alpha,linestyle='-')
    #
    # plot Cl phiphi
    #
    ax_PP.loglog(ll,clPP*ll*(ll+1)*ll*(ll+1)/twopi,color=var_color,alpha=var_alpha,linestyle='-')
    #
    # reset CLASS
    #
    M.empty()    
#
# output of P(k) figure
#
ax_Pk.set_xlim([1.e-4,3.])
ax_Pk.set_xlabel(r'$k \,\,\,\, [h/\mathrm{Mpc}]$')
ax_Pk.set_ylabel(r'$P(k) \,\,\,\, [\mathrm{Mpc}/h]^3$')
ax_Pk.legend(legarray)
fig_Pk.tight_layout()
fig_Pk.savefig('varying_%s_Pk.pdf' % var_figname)
#
# output of C_l^TT figure
#      
ax_TT.set_xlim([2,2500])
ax_TT.set_xlabel(r'$\ell$')
ax_TT.set_ylabel(r'$[\ell(\ell+1)/2\pi]  C_\ell^\mathrm{TT}$')
ax_TT.legend(legarray)
fig_TT.tight_layout()
fig_TT.savefig('varying_%s_cltt.pdf' % var_figname)
#
# output of C_l^EE figure
#    
ax_EE.set_xlim([2,2500])
ax_EE.set_xlabel(r'$\ell$')
ax_EE.set_ylabel(r'$[\ell(\ell+1)/2\pi]  C_\ell^\mathrm{EE}$')
ax_EE.legend(legarray)
fig_EE.tight_layout()
fig_EE.savefig('varying_%s_clee.pdf' % var_figname)
#
# output of C_l^pp figure
#   
ax_PP.set_xlim([10,2500])
ax_PP.set_xlabel(r'$\ell$')
ax_PP.set_ylabel(r'$[\ell^2(\ell+1)^2/2\pi]  C_\ell^\mathrm{\phi \phi}$')
ax_PP.legend(legarray)
fig_PP.tight_layout()
fig_PP.savefig('varying_%s_clpp.pdf' % var_figname)