testing / model.py
samim2024's picture
Update model.py
d4c3edd verified
raw
history blame
2.45 kB
import os
from typing import List
from langchain.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEmbeddings
# Configure safe cache directories (writable within container)
CACHE_DIR = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
os.environ["HF_HOME"] = CACHE_DIR
os.makedirs(CACHE_DIR, exist_ok=True)
# Constants
DATA_PATH = "/app/data"
VECTORSTORE_PATH = "/app/vectorstore"
DOCS_FILENAME = "context.txt"
VECTORSTORE_INDEX_NAME = "faiss_index"
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L6-v2"
LLM_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.1"
def load_embedding_model() -> Embeddings:
"""Load Hugging Face sentence transformer embeddings."""
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
def load_documents() -> List[Document]:
"""Load documents and split them into manageable chunks."""
loader = TextLoader(os.path.join(DATA_PATH, DOCS_FILENAME))
documents = loader.load()
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
return splitter.split_documents(documents)
def load_vectorstore() -> FAISS:
"""Load FAISS vectorstore from disk or create it from documents."""
vectorstore_dir = os.path.join(VECTORSTORE_PATH, VECTORSTORE_INDEX_NAME)
embedding_model = load_embedding_model()
if os.path.exists(vectorstore_dir):
return FAISS.load_local(
folder_path=vectorstore_dir,
embeddings=embedding_model,
allow_dangerous_deserialization=True,
)
documents = load_documents()
vectorstore = FAISS.from_documents(documents, embedding_model)
vectorstore.save_local(vectorstore_dir)
return vectorstore
def ask_question(query: str) -> str:
"""Run a question-answering chain with the retriever and language model."""
vectorstore = load_vectorstore()
retriever = vectorstore.as_retriever()
llm = HuggingFaceHub(
repo_id=LLM_REPO_ID,
model_kwargs={"temperature": 0.5, "max_tokens": 256},
)
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
return qa_chain.run(query)