Update model.py
Browse files
model.py
CHANGED
@@ -1,62 +1,70 @@
|
|
1 |
import os
|
|
|
2 |
from langchain.vectorstores import FAISS
|
3 |
-
from
|
4 |
from langchain_community.document_loaders import TextLoader
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.docstore.document import Document
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_community.llms import HuggingFaceHub
|
9 |
-
from
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
os.environ["
|
14 |
-
os.
|
|
|
15 |
|
16 |
# Constants
|
17 |
DATA_PATH = "/app/data"
|
18 |
VECTORSTORE_PATH = "/app/vectorstore"
|
19 |
DOCS_FILENAME = "context.txt"
|
|
|
20 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
|
|
21 |
|
22 |
|
23 |
def load_embedding_model() -> Embeddings:
|
24 |
-
"""
|
25 |
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
26 |
|
27 |
|
28 |
-
def load_documents() ->
|
29 |
-
"""Load and split
|
30 |
loader = TextLoader(os.path.join(DATA_PATH, DOCS_FILENAME))
|
31 |
-
|
|
|
32 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
33 |
-
|
34 |
-
return docs
|
35 |
|
36 |
|
37 |
def load_vectorstore() -> FAISS:
|
38 |
-
"""Load or create
|
39 |
-
|
40 |
-
|
41 |
embedding_model = load_embedding_model()
|
42 |
|
43 |
-
if os.path.exists(
|
44 |
-
return FAISS.load_local(
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
vectorstore = FAISS.from_documents(
|
48 |
-
vectorstore.save_local(
|
49 |
return vectorstore
|
50 |
|
51 |
|
52 |
def ask_question(query: str) -> str:
|
53 |
-
"""
|
54 |
vectorstore = load_vectorstore()
|
|
|
55 |
|
56 |
llm = HuggingFaceHub(
|
57 |
-
repo_id=
|
58 |
model_kwargs={"temperature": 0.5, "max_tokens": 256},
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
return
|
|
|
1 |
import os
|
2 |
+
from typing import List
|
3 |
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.embeddings.base import Embeddings
|
5 |
from langchain_community.document_loaders import TextLoader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain.docstore.document import Document
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain_community.llms import HuggingFaceHub
|
10 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
11 |
|
12 |
+
# Configure safe cache directories (writable within container)
|
13 |
+
CACHE_DIR = "/tmp/huggingface"
|
14 |
+
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
15 |
+
os.environ["HF_HOME"] = CACHE_DIR
|
16 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
17 |
|
18 |
# Constants
|
19 |
DATA_PATH = "/app/data"
|
20 |
VECTORSTORE_PATH = "/app/vectorstore"
|
21 |
DOCS_FILENAME = "context.txt"
|
22 |
+
VECTORSTORE_INDEX_NAME = "faiss_index"
|
23 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
24 |
+
LLM_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.1"
|
25 |
|
26 |
|
27 |
def load_embedding_model() -> Embeddings:
|
28 |
+
"""Load Hugging Face sentence transformer embeddings."""
|
29 |
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
30 |
|
31 |
|
32 |
+
def load_documents() -> List[Document]:
|
33 |
+
"""Load documents and split them into manageable chunks."""
|
34 |
loader = TextLoader(os.path.join(DATA_PATH, DOCS_FILENAME))
|
35 |
+
documents = loader.load()
|
36 |
+
|
37 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
38 |
+
return splitter.split_documents(documents)
|
|
|
39 |
|
40 |
|
41 |
def load_vectorstore() -> FAISS:
|
42 |
+
"""Load FAISS vectorstore from disk or create it from documents."""
|
43 |
+
vectorstore_dir = os.path.join(VECTORSTORE_PATH, VECTORSTORE_INDEX_NAME)
|
|
|
44 |
embedding_model = load_embedding_model()
|
45 |
|
46 |
+
if os.path.exists(vectorstore_dir):
|
47 |
+
return FAISS.load_local(
|
48 |
+
folder_path=vectorstore_dir,
|
49 |
+
embeddings=embedding_model,
|
50 |
+
allow_dangerous_deserialization=True,
|
51 |
+
)
|
52 |
|
53 |
+
documents = load_documents()
|
54 |
+
vectorstore = FAISS.from_documents(documents, embedding_model)
|
55 |
+
vectorstore.save_local(vectorstore_dir)
|
56 |
return vectorstore
|
57 |
|
58 |
|
59 |
def ask_question(query: str) -> str:
|
60 |
+
"""Run a question-answering chain with the retriever and language model."""
|
61 |
vectorstore = load_vectorstore()
|
62 |
+
retriever = vectorstore.as_retriever()
|
63 |
|
64 |
llm = HuggingFaceHub(
|
65 |
+
repo_id=LLM_REPO_ID,
|
66 |
model_kwargs={"temperature": 0.5, "max_tokens": 256},
|
67 |
)
|
68 |
|
69 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
70 |
+
return qa_chain.run(query)
|